精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=ax3+bx2-x+c(a,b,c∈R且a≠0).
(1)若a=1,b=1,求函数f(x)的单调区间;
(2)若存在实数x1,x2(x1≠x2)满足f(x1)=f(x2),是否存在实数a,b,c,使f(x)在$\frac{{x}_{1}+{x}_{2}}{2}$处的切线斜率为0,若存在,求出一组实数a,b,c,否则说明理由.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)首先由f(x1)=f(x2)代入f(x)整理可得a(x12+x1x2+x22)+b(x1+x2)-1=0;再化简可得f′($\frac{{x}_{1}{+x}_{2}}{2}$)≠0;最后判断出不存在这样的实数a,b,c满足条件.

解答 解:(1)当a=1,b=1时,f(x)=x3+x2-x+c,f(x)的定义域为R,
f′(x)=3x2+2x-1,
由f′(x)>0,得x<-1或x>$\frac{1}{3}$;由f′(x)<0,得-1<x<$\frac{1}{3}$,
所以函数f(x)的单调递增区间是(-∞,-1)和($\frac{1}{3}$,+∞),
f(x)的单调递减区间是(-1,$\frac{1}{3}$);
(2)不存在实数a,b,c满足条件.
事实上,由f(x1)=f(x2)得:a(x13-x23)+b(x12-x22)-(x1-x2)=0
∵x1≠x2∴a(x12+x1x2+x22)+b(x1+x2)-1=0
又f'(x)=3ax2+2bx-1
∴f′( $\frac{{x}_{1}{+x}_{2}}{2}$)=3a( $\frac{{{x}_{1}+x}_{2}}{2}$)2+2b•$\frac{{{x}_{1}+x}_{2}}{2}$-1
=3a•$\frac{{{x}_{1}}^{2}{{+x}_{2}}^{2}+{{2x}_{1}x}_{2}}{4}$+1-a(${{x}_{1}}^{2}$+x1x2+${{x}_{2}}^{2}$)-1=-$\frac{a}{4}$(x1-x22
∵a≠0且x1-x2≠0∴f′($\frac{{{x}_{1}+x}_{2}}{2}$)≠0,
故不存在实数a,b,c满足条件.

点评 本题考查了函数单调性与其导数的关系,及导数的几何意义等基本知识;同时考查了学生分类讨论的思想方法与代数运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若a=log${\;}_{\frac{1}{2}}}$3,b=log3$\frac{1}{2}$,c=20.3,则(  )
A.a<b<cB.b<a<cC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简求值:
(1)$2\sqrt{3}×\root{3}{1.5}×\root{6}{12}×\sqrt{{{(3-π)}^2}}$;
(2)$lg25+\frac{2}{3}lg8+lg5•lg20+{(lg2)^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合M={x|x2-2x<0},N={x|x-1>0},则M∩N=(  )
A.{x|1<x<2}B.{x|0<x<1}C.{x|x>2}D.{x|x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,B=$\frac{π}{3}$,sinA+$\sqrt{3}$cosA=2,则b=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A、B两点,直线AF2与椭圆的另一个交点为C,若${S}_{△ABC}=3{S}_{△BC{F}_{2}}$,则椭圆的离心率为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{10}}{5}$D.$\frac{3\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示,该几何体的体积为(  )
A.24B.$\frac{70}{3}$C.20D.$\frac{68}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若数列{an}满足an+2=2•$\frac{{{a_{n+1}}}}{a_n}$(n∈N*),且a1=1,a2=2,则数列{an}的前2016项之积为(  )
A.22014B.22015C.22016D.22017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知tan(π-x)=2,
(1)求$\frac{sinx+cosx}{sinx-cosx}$的值;    
(2)求sin2x+sinxcosx-cos2x-2的值.

查看答案和解析>>

同步练习册答案