精英家教网 > 高中数学 > 题目详情

【题目】已知函数.曲线处的切线平行于.

1)讨论的单调性;

2)若时,恒成立,求实数的取值范围.

【答案】1上单调递减,在上单调递增;(2.

【解析】

1)对求导,根据题意可得,即可得到解析式,上单增,且,可得上单调递减,在上单调递增;

2)令,不等式转化为,对求导进行分类讨论可得实数的取值范围.

1,由题意

.∴

上单增,

时,时,

,所以上单调递减,在上单调递增.

2)令

恒成立,必有.

.

i)当时,恒成立,单调递增,

满足题意,所以.

ii)当时,由

单调递减,在单调递增.

,所以当恒成立,

上单调递减.

恒成立不符,

不满足题意.

综上所述,的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知直线l过点P22.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρρcos2θ4cosθ0.

1)求C的直角坐标方程;

2)若lC交于AB两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小学为了了解该校学生课外阅读的情况,在该校三年级学生中随机抽取了20名男生和20名女生进行调查,得到他们在过去一整年内各自课外阅读的书数(),并根据统计结果绘制出如图所示的茎叶图.

如果某学生在过去一整年内课外阅读的书数()不低于90本,则称该学生为书虫

1)根据频率分布直方图填写下面列联表,并据此资料,在犯错误的概率不超过10%的前提下,你是否认为书虫与性别有关?

男生

女生

总计

书虫

非书虫

总计

附:

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.814

5.024

2)在所抽取的20名女生中,从过去一整年内课外阅读的书数()不低于86本的学生中随机抽取两名,求抽出的两名学生都是书虫的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是(

注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,点在以为直径的圆上,平面平面,点在线段上,且,点的重心,点的中点.

(1)求证:平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且与抛物线交于两点,为坐标原点)的面积为

(1)求椭圆的方程;

(2)如图,点为椭圆上一动点(非长轴端点)为左、右焦点,的延长线与椭圆交于点,的延长线与椭圆交于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体中,均垂直于平面的中点.

1)求证:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是为参数),曲线的直角坐标方程为,将曲线上的点向下平移1个单位,然后横坐标伸长为原来的2倍,纵坐标不变,得到曲线

1)求曲线和曲线的直角坐标方程;

2)若曲线和曲线相交于两点,求三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共13分)已知函数 的最小正周期为

)求的值;

)求函数的单调区间及其图象的对称轴方程.

查看答案和解析>>

同步练习册答案