精英家教网 > 高中数学 > 题目详情
运货卡车以每小时x千米(x∈[c,100],且0<c<80)的速度匀速行驶m千米(m为正常数),若汽油的价格是每升7元,而汽车每小时耗油(6+
x2
800
)升,司机的工资是每小时14元,则这次行车的总费用最低时x的取值为(  )
A、cB、60C、80D、100
考点:基本不等式在最值问题中的应用
专题:应用题,不等式的解法及应用
分析:(Ⅰ)运货的费用包含油费与司机的工资两部分,根据汽油的价格是每升7元,而汽车每小时耗油(6+
x2
800
)升,司机的工资是每小时14元,可建立y关于x的函数解析式,利用基本不等式求最值即可.
解答: 解:由题意,运货的费用包含油费与司机的工资两部分,则
y=
m
x
×14+
m
x
×(6+
x2
800
)×7=7m(
8
x
+
x
800

∵x∈[c,100],且0<c<80,
∴x=80时,
8
x
+
x
800
1
5

即x=80时,行车的费用最低,最低费用为
7m
5
元,
故选:C.
点评:本题函考查数模型的选择与应用,主要考查函数模型的构建及解决最低费用问题,关键是实际问题向数学问题的转化,同时考查利用基本不等式求最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知:α,β是不同的平面,l,m,n是不同的直线,则下列说法正确的是(  )
A、
l∥m
l⊥α
m∥β
⇒α⊥β
B、
l⊥m
m?α
⇒l⊥α
C、
l⊥m
l⊥n
m?α
n?α
?l⊥α
D、
l∥β
m∥β
l?α
m?α
⇒α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=5sin(2x+
π
6
)+
7
2

(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调减区间;
(3)当
π
6
≤x≤
π
2
时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

求(2a3-3b210的展开式中第8项.

查看答案和解析>>

科目:高中数学 来源: 题型:

P,Q是三角形ABC边BC上两点,且BP=QC,求证:
AB
+
AC
=
AP
+
AQ

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线y2-xy+2x+k=0过点(a,-a)(a∈R),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等边三角形PAB的边长为2,四边形ABCD为矩形,AD=4,平面PAB⊥平面ABCD,E,F,G分别是线段AB,CD,PD上的点.
(1)如图1,若G为线段PD的中点,BE=DF=
2
3
,证明:PB∥平面EFG;
(2)如图2,若E,F分别是线段AB,CD的中点,DG=2GP,试问:矩形ABCD内(包括边界)能否找到点H,使之同时满足下面两个条件,并说明理由.
①点H到点F的距离与点H到直线AB的距离之差大于4;
②GH⊥PD.

查看答案和解析>>

科目:高中数学 来源: 题型:

将指数形式256=2x化为对数形式,下列结果正确的是(  )
A、log2256=8
B、log2562=8
C、log8256=2
D、log2568=2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是直线l上的三点,向量
OA
OB
OC
满足
OA
=[f(x)+2f′(1)x]
OB
-lnx
OC
,则函数y=f(x)的表达式是(  )
A、f(x)=lnx-
2
3
x+1
B、f(x)=lnx-
2
3
x
C、f(x)=lnx+2x+1
D、f(x)=lnx+2x

查看答案和解析>>

同步练习册答案