精英家教网 > 高中数学 > 题目详情
4.若f(x)=x3-6ax的单调递减区间是(-2,2),则a的取值范围是(  )
A.(-∞,0]B.[-2,2]C.{2}D.[2,+∞)

分析 求函数的导数,根据函数单调性和导数之间的关系即可得到结论.

解答 解:∵f(x)=x3-6ax,
∴f′(x)=3x2-6a,
∵函数f(x)=x3-6ax的单调递减区间是(-2,2),
∴x=-2或x=2是方程f′(x)=3x2-6a=0的两个根,
则3×4-6a=0,即a=2,
故选:C.

点评 本题主要考查函数的单调性和导数之间的关系,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x-(e-1)lnx,则不等式f(ex)<1的解集为(  )
A.(0,1)B.(1,+∞)C.(0,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知m∈R,命题p:对任意x∈[0,1],不等式2x-2≥m2-3m 恒成立;命题q:存在x∈[-1,1],使得m≤ax 成立.
(1)若p为真命题,求m 的取值范围;
(2)当a=1 时,若p且q为假,p或q为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知i为虚数单位,若复数z=a2-1+(1+a)i(其中a∈R)为纯虚数,则$\frac{z}{2-i}$=(  )
A.$\frac{4}{5}-\;\;\frac{2}{5}i$B.$-\;\;\frac{2}{5}+\frac{4}{5}i$C.$\frac{4}{5}+\frac{2}{5}i$D.$-\;\;\frac{2}{5}-\;\;\frac{4}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}的前n项和为Sn,并且a2=2,S5=15,数列{bn}满足:${b_1}=\frac{1}{2}$,${b_{n+1}}=\frac{n+1}{n}{b_n}(n∈{N^*})$,记数列{bn}的前n项和为Tn
(1)求数列{an}的通项公式an及前n项和为Sn
(2)求数列{bn}的通项公式bn及前n项和为Tn;求Tn的最值并求此时n的序号.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=2sin(2x+$\frac{π}{3}$)的图象(  )
A.关于原点对称B.关于y轴对称
C.关于直线x=$\frac{π}{6}$对称D.关于点(-$\frac{π}{6}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数$f(x)=alnx+\frac{1}{x}$在区间$({\frac{1}{2},+∞})$上单调递增,则实数a的取值范围是(  )
A.(-∞,-2]B.(-∞,-1]C.[1,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中的假命题是(  )
A.?x∈R,ex>0B.?x∈N,x2>0
C.?x0∈R,lnx0<0D.$?{x_0}∈{N^*},sin\frac{π}{2}{x_0}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-3x2-9x+11.
(1)写出函数f(x)的单调递增区间.
(2)讨论函数f(x)的极大值或极小值,如果有,试写出极值.

查看答案和解析>>

同步练习册答案