【题目】设函数f(x)的定义域是(0,+∞),且对任意的正实数x,y都有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且x>1时,f(x)>0.
(1)求f( )的值;
(2)判断y=f(x)在(0,+∞)上的单调性,并给出你的证明;
(3)解不等式f(x2)>f(8x﹣6)﹣1.
【答案】
(1)解:令x=y=1,则可得f(1)=0,
再令x=2,y= ,得f(1)=f(2)+f( ),故f( )=﹣1
(2)解:设0<x1<x2,则f(x1)+f( )=f(x2)
即f(x2)﹣f(x1)=f( ),
∵ >1,故f( )>0,即f(x2)>f(x1)
故f(x)在(0,+∞)上为增函数
(3)解:由f(x2)>f(8x﹣6)﹣1得f(x2)>f(8x﹣6)+f( )=f[ (8x﹣6)],
故得x2>4x﹣3且8x﹣6>0,解得解集为{x| <x<1或x>3}
【解析】(1)由题条件知若能求出f(1)的值,再由1=2× 即可得到求得f( )的值;(2)题设中有x>1时,f(x)>0,故可令0<x1<x2 , 由 的恒等变形及题设中的恒等式得到f(x1)+f( )=f(x2),由此问题得证.做此题时要注意做题步骤,先判断再证明;(3)由(2)的结论,利用单调性直接将抽象不等式转化为一般不等式求解即可
科目:高中数学 来源: 题型:
【题目】已知a>b>1,若logab+logba= ,ab=ba , 则由a,b,3b,b2 , a﹣2b构成的包含元素最多的集合的子集个数是( )
A.32
B.16
C.8
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列f(x1),f(x2),…f(xn),…是公差为2的等差数列,且x1=a2其中函数f(x)=logax(a为常数且a>0,a≠1).
(Ⅰ)求数列{xn}的通项公式;
(Ⅱ)若an=logaxn , 求证 + +…+ <1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心(2,﹣3),一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是( )
A.x2+y2﹣4x+6y=0
B.x2+y2﹣4x+6y﹣8=0
C.x2+y2﹣4x﹣6y=0
D.x2+y2﹣4x﹣6y﹣8=0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为,这两条曲线在第一象限的交点为, 是以为底边的等腰三角形.若,记椭圆与双曲线的离心率分别为,则的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= (a∈R).
(Ⅰ)求f(x)在区间[-1,2]上的最值;
(Ⅱ)若过点P(1,4)可作曲线y=f(x)的3条切线,求实数a的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com