【题目】下面给出四种说法: ①用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;
②命题P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③设随机变量X服从正态分布N(0,1),若P(x>1)=p,则P(﹣1<X<0)= ﹣p
④回归直线一定过样本点的中心( , ).
其中正确的说法有(请将你认为正确的说法的序号全部填写在横线上)
【答案】②③④
【解析】解:对于①,用相关指数R2来刻画回归效果时, R2越大,说明模型的拟合效果越好,∴①错误;
对于②,命题P:“x0∈R,x02﹣x0﹣1>0”的否定是
¬P:“x∈R,x2﹣x﹣1≤0”,②正确;
对于③,根据正态分布N(0,1)的性质可得,
若P(X>1)=p,则P(X<﹣1)=p,
∴P(﹣1<X<1)=1﹣2p,
∴P(﹣1<X<0)= ﹣p,③正确;
对于④,回归直线一定过样本点的中心( , ),正确;
综上,正确的说法是②③④.
所以答案是:②③④.
【考点精析】本题主要考查了相关系数的相关知识点,需要掌握|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2= ,且直线l经过曲线C的左焦点F. ( I )求直线l的普通方程;
(Ⅱ)设曲线C的内接矩形的周长为L,求L的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=2 cos( ﹣θ)
(1)求曲线C的直角坐标方程;
(2)已知直线l过点P(1,0)且与曲线C交于A,B两点,若|PA|+|PB|= ,求直线l的倾斜角α.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于集合 ,定义了一种运算“ ”,使得集合 中的元素间满足条件:如果存在元素 ,使得对任意 ,都有 ,则称元素 是集合 对运算“ ”的单位元素.例如: ,运算“ ”为普通乘法;存在 ,使得对任意 ,都有 ,所以元素 是集合 对普通乘法的单位元素.
下面给出三个集合及相应的运算“ ”:
② ,运算“ ”为普通减法;
② 表示 阶矩阵, },运算“ ”为矩阵加法;
③ (其中 是任意非空集合),运算“ ”为求两个集合的交集.
其中对运算“ ”有单位元素的集合序号为( )
A.①②;
B.①③;
C.①②③;
D.②③.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学中文系共有本科生5000人,其中一、二、三、四年级的学生比为5:4:3:1,要用分层抽样的方法从该系所有本科生中抽取一个容量为260的样本,则应抽二年级的学生( )
A.100人
B.60人
C.80人
D.20人
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】医学上所说的“三高”通常是指血脂增高、血压增高、血糖增高等疾病.为了解“三高”疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:
(1)请将列联表补充完整;
患三高疾病 | 不患三高疾病 | 合计 | |
男 | 6 | 30 | |
女 | |||
合计 | 36 |
(2)能否在犯错误的概率不超过0.005的前提下认为患“三高”疾病与性别有关? 下列的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 f(x)=2lnx+x2﹣ax. (Ⅰ)当a=5时,求f(x)的单调区间;
(Ⅱ)设A(x1 , y1),B(x2 , y2)是曲线y=f(x)图象上的两个相异的点,若直线AB的斜率k>1恒成立,求实数a的取值范围;
(Ⅲ)设函数f(x)有两个极值点x1 , x2 , x1<x2且x2>e,若f(x1)﹣f(x2)≥m恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4lnx﹣x+ , g(x)=2x2﹣bx+20,若对于任意x1∈(0,2),都存在x2∈[1,2],使得f(x1)≥g(x2)成立,则实数b的取值范围是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com