精英家教网 > 高中数学 > 题目详情
14.已知$A(\frac{1}{4},0)$,动点P到点A的距离比到直线x=-$\frac{5}{4}$的距离少 1;
(1)求点P的轨迹方程;
(2)已知M(4,0),是否存在定直线x=a,以PM为直径的圆与直线x=a的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由.

分析 (1)由题意点P的轨迹是以A为焦点的抛物线,即可求得点P的轨迹方程;
(2)因为P在(1)中的抛物线上,设出P的坐标,求出PM的中点坐标,利用弦心距公式列式求出以PM为直径的圆与直线x=a的相交弦长,有弦长为定值可求得定值a的值.

解答 解:(1)∵$A(\frac{1}{4},0)$,动点P到点A的距离比到直线x=-$\frac{5}{4}$的距离少 1,
∴点P的轨迹是以A为焦点的抛物线,即点P的轨迹方程:y2=x(4分)
(2)由(1),点P的轨迹方程是y2=x;设P(y2,y),
∵M (4,0),则以PM为直径的圆的圆心即PM的中点T($\frac{{{y^2}+4}}{2}$,$\frac{y}{2}$),以PM为直径的圆与直线x=a的相交弦长:L=2$\sqrt{{{(\frac{{{y^2}+4}}{2}-4)}^2}+{{(\frac{y}{2}-0)}^2}-{{(\frac{{{y^2}+4}}{2}-a)}^2}}$=2$\sqrt{(a-4)({y^2}-a)+\frac{y^2}{4}}$(6分)
=2$\sqrt{(a-\frac{15}{4}){y^2}-a(a-4)}$(8分)
若a为常数,则对于任意实数y,L为定值的条件是a-$\frac{15}{4}$=0,即a=$\frac{15}{4}$时,L=$\frac{{\sqrt{15}}}{2}$(11分)
∴存在定直线x=$\frac{15}{4}$,以PM为直径的圆与直线x=$\frac{15}{4}$的相交弦长为定值$\frac{{\sqrt{15}}}{2}$.(12分)

点评 本题考查了抛物线方程的求法,考查了直线与圆的关系,训练了利用弦心距求弦长,是有一定难度题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.不等式$\frac{1-x}{x}$≤0的解集为{x|x<0,或x≥1 }.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校高三年级在学期末进行的质量检测中,考生数学成绩情况如下表所示:
数学成绩[90,105)[105,120)[120,135)[135,150]
文科考生5740246
理科考生123xyz
已知用分层抽样方法在不低于135分的考生中随机抽取5名考生进行质量分析,其中文科考生抽取了1名.
(1)求z的值;
(2)如图是文科不低于135分的6名学生的数学成绩的茎叶图,计算这6名考生的数学成绩的方差;
(3)已知该校数学成绩不低于120分的文科理科考生人数之比为1:3,不低于105分的文科理科考生人数之比为2:5,求理科数学及格人数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=log3(x2-2x+4)的值域为(  )
A.[1,+∞)B.[0,+∞)C.[3,+∞)D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线y=kx+1(k∈R)与椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有两个公共点,则m的取值范围为(  )
A.(1,+∞)B.[1,+∞)C.(1,5)∪(5,+∞)D.[1,5)∪(5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图程序框图的算法思路,源于我国南宋时期的数学家秦九韶在他的著作《数书九章》中提出的秦九韶算法,执行该程序框图,若输入的n,an,x分别为5,1,-2,且a4=5,a3=10,a2=10,a1=5,a0=1,则输出的v=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若抛物线y2=2x上的一点到其准线的距离为2,则该点的坐标可以是(  )
A.$({\frac{1}{2}\;\;,\;\;1})$B.$({1\;\;,\;\;\sqrt{2}})$C.$({\frac{3}{2}\;\;,\;\;\sqrt{3}})$D.(2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$=(3,m),$\overrightarrow{b}$=(1,-2),若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$2,则m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知△ABC是边长为3的等边三角形,点P是以A为圆心的单位圆上一动点,点Q满足$\overrightarrow{AQ}$=$\frac{2}{3}$$\overrightarrow{AP}$+$\frac{1}{3}$$\overrightarrow{AC}$,则|$\overrightarrow{BQ}$|的最小值是$\frac{3\sqrt{7}-2}{3}$.

查看答案和解析>>

同步练习册答案