精英家教网 > 高中数学 > 题目详情

为坐标原点,点M坐标为,若点满足不等式组:则使取得最大值的点的个数是(   )

A.B.C.D.无数个

D

解析考点:简单线性规划.
分析:先根据约束条件画出可行域,由于=(2,1)?(x,y)=2x+y,设z=2x+y,再利用z的几何意义求最值,只需求出直线z=2x+y过可行域内的哪些点时,z最大即可.
 
解:先根据约束条件画出可行域,
=(2,1)?(x,y)=2x+y,
设z=2x+y,
将最大值转化为y轴上的截距最大,
由于直线z=2x+y与可行域边界:2x+y-12=0平行,
当直线z=2x+y经过直线:2x+y-12=0上所有点时,z最大,
最大为:12.
则使得取得最大值时点N个数为无数个.
故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设指数函数y=ax与对数函数y=logax(a>0,a≠1)的图象分别为C1,C2,点M在曲线C1上,线段OM(O为坐标原点)交曲线C1于另一点N.若曲线C2上存在一点P,使点P的横坐标与点M的纵坐标相等,点P的纵坐标是点N的横坐标的2倍,则点P的坐标是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设指数函数y=ax与对数函数y=logax(a>0,a≠1)的图象分别为C1,C2,点M在曲线C1上,线段OM(O为坐标原点)交曲线C1于另一点N.若曲线C2上存在一点P,使点P的横坐标与点M的纵坐标相等,点P的纵坐标是点N的横坐标的2倍,则点P的坐标是


  1. A.
    (4,4)
  2. B.
    (a4,4)
  3. C.
    (4,loga4)
  4. D.
    (loga4,2)

查看答案和解析>>

科目:高中数学 来源:专项题 题型:单选题

设指数函数y=ax与对数函数y=logax (a>0,a≠1)的图象分别为C1,C2,点M在曲线C1上,线段OM(O为坐标原点)交曲线C1于另一点N,若曲线C2上存在一点P,使点P的横坐标与点M的纵坐标相等,点P的纵坐标是点N横坐标的2倍,则点P的坐标是
[     ]
A.(4,4)
B.(4,loga4)
C.(a4,4)
D.(loga4,2)

查看答案和解析>>

同步练习册答案