精英家教网 > 高中数学 > 题目详情

【题目】已知曲线上任意一点到直线的距离是它到点距离的2倍;曲线是以原点为顶点,为焦点的抛物线.

1)求的方程;

2)设过点的动直线与曲线相交于两点,分别以为切点引曲线的两条切线,设相交于点.连接的直线交曲线两点.

i)求证:

ii)求的最小值.

【答案】1的方程为的方程为2)(i)证明见解析(ii

【解析】

1)根据几何特征列方程即可求解曲线方程;

2)联立直线与曲线方程,结合韦达定理处理,(i)证明斜率之积为-1,(ii)化简代数式根据基本不等式求解最值.

1)设,则由题意有,化简得:.

的方程为

为抛物线的焦点,设其方程

易知的方程为.

2)(i)由题意可设的方程为,代入

,则,由

所以的方程分别为.

,从而.

ii)可设的方程为,代入

,设

所以

(其中.

,则,故单调递增,

因此

当且仅当等号成立.

的最小值为7.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在位于城市A南偏西相距100海里的B处,一股台风沿着正东方向袭来,风速为120海里/小时,台风影响的半径为海里

1)若,求台风影响城市A持续的时间(精确到1分钟)?

2)若台风影响城市A持续的时间不超过1小时,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(

A.m为实数,若方程表示双曲线,则m2

B.pq为真命题pq为真命题的充分不必要条件

C.命题xR,使得x2+2x+30”的否定是:xRx2+2x+30”

D.命题x0yfx)的极值点,则fx)=0”的逆命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为确定下一年度投入某种产品的生产所需的资金,需了解每投入2千万资金后,工人人数(单位:百人)对年产能(单位:千万元)的影响,对投入的人力和年产能的数据作了初步处理,得到散点图和统计量表.

1)根据散点图判断:哪一个适宜作为年产能关于投入的人力的回归方程类型?并说明理由?

2)根据(1)的判断结果及相关的计算数据,建立关于的回归方程;

3)现该企业共有2000名生产工人,资金非常充足,为了使得年产能达到最大值,则下一年度共需投入多少资金(单位:千万元)?

附注:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为(说明:的导函数为)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若存在两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中e为自然对数的底).

1)若上单调递增,求实数a的取值范围;

2)若,证明:存在唯一的极小值点,且.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C的方程为,设AB是过椭圆C中心O的任意弦,l是线段AB的垂直平分线,Ml上与O不重合的点.

1)求以椭圆的焦点为顶点,顶点为焦点的双曲线方程;

2)若,当点A在椭圆C上运动时,求点M的轨迹方程;

3)记Ml与椭圆C的交点,若直线AB的方程为,当面积取最小值时,求直线AB的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医院体检中心为回馈大众,推出优惠活动:对首次参加体检的人员,按200元/次收费,并注册成为会员,对会员的后续体检给予相应优惠(本次即第一次),标准如下:

体检次序

第一次

第二次

第三次

第四次

第五次及以上

收费比例

1

0.95

0.90

0.85

0.8

该体检中心从所有会员中随机选取了100位对他们在本中心参加体检的次数进行统计,得到数据如下表:

体检次数

一次

两次

三次

四次

五次及以上

频数

60

20

12

4

4

假设该体检中心为顾客体检一次的成本费用为150元,根据所给数据,解答下列问题:

1)已知某顾客在此体检中心参加了3次体检,求这3次体检,该体检中心的平均利润;

2)该体检中心要从这100人里至少体检3次的会员中,按体检次数用分层抽样的方法抽出5人,再从这5人中抽取2人发放纪念品,求抽到的2人中恰有1人体检3次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)当时,解关于的方程(其中为自然对数的底数);

2)求函数的单调增区间;

3)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由. (参考数据:

查看答案和解析>>

同步练习册答案