精英家教网 > 高中数学 > 题目详情
5.设O为△ABC的外心,且$\overrightarrow{OA}$$+\overrightarrow{OB}$+$\sqrt{3}$$\overrightarrow{OC}$=$\overrightarrow{0}$,则△ABC的内角C=$\frac{π}{6}$.

分析 设$<\overrightarrow{OA},\overrightarrow{OB}>$=θ,△ABC的外接圆的半径为R.由于$\overrightarrow{OA}$$+\overrightarrow{OB}$+$\sqrt{3}$$\overrightarrow{OC}$=$\overrightarrow{0}$,变形$\overrightarrow{OA}$$+\overrightarrow{OB}$=-$\sqrt{3}$$\overrightarrow{OC}$,作数量积运算可得:${\overrightarrow{OA}}^{2}+{\overrightarrow{OB}}^{2}$+2$\overrightarrow{OA}•\overrightarrow{OB}$=3${\overrightarrow{OC}}^{2}$,化为2+2cosθ=3,即可得出.

解答 解:设$<\overrightarrow{OA},\overrightarrow{OB}>$=θ,△ABC的外接圆的半径为R.
∵$\overrightarrow{OA}$$+\overrightarrow{OB}$+$\sqrt{3}$$\overrightarrow{OC}$=$\overrightarrow{0}$,
∴$\overrightarrow{OA}$$+\overrightarrow{OB}$=-$\sqrt{3}$$\overrightarrow{OC}$,
∴${\overrightarrow{OA}}^{2}+{\overrightarrow{OB}}^{2}$+2$\overrightarrow{OA}•\overrightarrow{OB}$=3${\overrightarrow{OC}}^{2}$,
化为2+2cosθ=3,
∴cosθ=$\frac{1}{2}$,
∴θ=$\frac{π}{3}$.
∴C=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.

点评 本题考查了向量数量积运算性质、三角形外接圆的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知f(x)=(m2+m-6)x2+(m-2)x+(n+7)为奇函数,则m=2或-3,n=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|x2-3x+2=0},B={x|ax-2=0},C={x|x2-mx+2=0}.
(1)若B⊆A,求实数a构成的集合;
(2)若A∩C=C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知A={(x,y)|y=3x-2},B={(x,y)|y=-x+10},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线x+2y=1与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1相交于A,B两点,AB中点为M,若直线AB斜率与OM斜率之积为-$\frac{1}{4}$,则椭圆的离心率e的值是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若ln2=m,ln3=n,则ln216=3m+3n(用m,n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.圆O的直径为BC,点A是圆周上异于B,C的一点,且|AB|•|AC|=1,若点P是圆O所在平面内的一点,且$\overrightarrow{AP}=\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{9\overrightarrow{AC}}{|\overrightarrow{AC}|}$,则$\overrightarrow{PB}•\overrightarrow{PC}$的最大值为(  )
A.2$\sqrt{3}$B.9C.76D.81

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,椭圆C与x轴正半轴交于A点,与y轴正半轴交于B(0,2),且$\overrightarrow{BF}$•$\overrightarrow{BA}$=4$\sqrt{2}$+4,过点D(4,0)作直线l交椭圆于不同两点P,Q,则直线l的斜率的取值范围是(  )
A.-1<k<$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$<k<$\frac{\sqrt{2}}{2}$C.-$\frac{\sqrt{2}}{2}$<k<1D.-1<k<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2-2ax+3a-4在区间(-1,1)上有一个零点.
(1)求实数a的取值范围;
(2)若a=1,用二分法求f(x)=0在区间(-1,1)上的根.

查看答案和解析>>

同步练习册答案