精英家教网 > 高中数学 > 题目详情

【题目】假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量,若一天中从甲地去乙地的旅客人数不超过900的概率为p0,p0的值为 ( )

A. 0.954 4 B. 0.682 6 C. 0.997 4 D. 0.977 2

【答案】D

【解析】

变量服从正态分布N(800,502),即服从均值为800,标准差为50的正态分布,适合700<X≤900范围内取值即在(μ﹣2σ,μ+2σ)内取值,其概率为:95.44%,从而由正态分布的对称性得出不超过900的概率为p0

由于随机变量X服从正态分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.9544.

由正态分布的对称性,可得p0=(P(X≤900)=P(X≤800)+P(800<X≤900)=+P(700<X≤900)=0.9772

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某品牌豆腐食品是经过A,B,C三道工序加工而成的,A,B,C工序的产品合格率分别为,,.已知每道工序的加工都相互独立,三道工序加工的产品都合格时产品为一等品;恰有两次合格为二等品;其他的为废品,不进入市场.

(1)生产一袋豆腐食品,求产品为废品的概率;

(2)生产一袋豆腐食品,X为三道加工工序中产品合格的工序数,X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.

(1)求证:∥平面EFGH;

(2)求证:四边形EFGH是矩形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3 x2+6x+m.
(1)对于x∈R,f′(x)≥a恒成立,求a的最大值;
(2)若方程f(x)=0有且仅有一个实根,求m的取值范围;
(3)当m=2时,若函数g(x)= + x﹣6+2blnx(b≠0)在[1,2]上单调递减,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司的生产部门调研发现,该公司第二、三季度的月用电量与月份线性相关,且数据统计如下表:

但核对电费报表时发现一组数据统计有误.

(1)请指出哪组数据有误,并说明理由;

(2)在排除有误数据后,求月用电量与月份之间的回归方程,并预测统计有误月份的用电量.(结果精确到0.1)

附注:,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,BA,CD的延长线相交于点E,EF∥DA,并与CB的延长线交于点F,FG切⊙O于G.

(1)求证:BEEF=CEBF;
(2)求证:FE=FG.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,设当箭头a指向①处时,输出的S的值为m,当箭头a指向②处时,输出的S的值为n,则m+n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题P:R上定义运算x y=(1-x)y.不等式x1-a)x<1对任意实数x恒成立;命题Q:若不等式≥2对任意的x∈ N*恒成立.P∧ Q为假命题,P∨ Q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数满足,且在区间上是增函数.,若方程在区间上有四个不同的根,则

A. -8 B. -4 C. 8 D. -16

查看答案和解析>>

同步练习册答案