1£®ÒÑ֪ƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÓÒ¶¥µãºÍÉ϶¥µã·Ö±ðΪA£¬B£¬ÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÇÒ¹ýµã£¨1£¬$\frac{\sqrt{3}}{2}$£©£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©Èçͼ£¬ÈôÖ±ÏßlÓë¸ÃÍÖÔ²½»ÓÚµãP£¬QÁ½µã£¬Ö±ÏßBQ£¬APµÄбÂÊ»¥ÎªÏà·´Êý£®
¢ÙÇóÖ¤£ºÖ±ÏßlµÄбÂÊΪ¶¨Öµ£»
¢ÚÈôµãPÔÚµÚÒ»ÏóÏÞ£¬Éè¡÷ABPÓë¡÷ABQµÄÃæ»ý·Ö±ðΪS1£¬S2£¬Çó$\frac{{S}_{1}}{{S}_{2}}$µÄ×î´óÖµ£®

·ÖÎö £¨1£©Í¨¹ý½«µã£¨1£¬$\frac{\sqrt{3}}{2}$£©´úÈëÍÖÔ²·½³Ì£¬½áºÏÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$¼ÆËã¼´µÃ½áÂÛ£»
£¨2£©Í¨¹ý£¨1£©¿ÉÖªA£¨2£¬0£©¡¢B£¨0£¬1£©£®¢Ùͨ¹ýÉèÖ±ÏßAPµÄ·½³ÌΪx=my+2¡¢Ö±ÏßBQµÄ·½³ÌΪx=-my+m£¬·Ö±ðÓëÍÖÔ²·½³ÌÁªÁ¢£¬¼ÆËã¿ÉÖªP£¨$\frac{8-2{m}^{2}}{4+{m}^{2}}$£¬-$\frac{4m}{4+{m}^{2}}$£©¡¢Q£¨$\frac{8m}{4+{m}^{2}}$£¬$\frac{{m}^{2}-4}{4+{m}^{2}}$£©£¬ÀûÓÃбÂʼÆË㹫ʽ¼ÆËã¼´¿É£»¢Úͨ¹ý£¨1£©¿ÉÖªÖ±ÏßABµÄ·½³ÌΪx+2y-2=0£¬|AB|=$\sqrt{5}$£¬Í¨¹ý¢Ù¿ÉÖªP£¨$\frac{8-2{m}^{2}}{4+{m}^{2}}$£¬-$\frac{4m}{4+{m}^{2}}$£©¡¢Q£¨$\frac{8m}{4+{m}^{2}}$£¬$\frac{{m}^{2}-4}{4+{m}^{2}}$£©£¬ÀûÓõãPÔÚµÚÒ»ÏóÏÞ¿ÉÖª-2£¼m£¼0£¬·Ö±ð¼ÆËã³öµãP¡¢Qµ½Ö±ÏßABµÄ¾àÀ룬ÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½¼ÆËã¡¢½áºÏ»ù±¾²»µÈʽ»¯¼ò¼´µÃ½áÂÛ£®

½â´ð £¨1£©½â£ºÒÀÌâÒ⣬$\left\{\begin{array}{l}{\frac{1}{{a}^{2}}+\frac{3}{4{b}^{2}}=1}\\{\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}=\frac{\sqrt{3}}{2}}\end{array}\right.$£¬
»¯¼òµÃ£º$\left\{\begin{array}{l}{4{b}^{2}+3{a}^{2}=4{a}^{2}{b}^{2}}\\{{a}^{2}=4{b}^{2}}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{{a}^{2}=4}\\{{b}^{2}=1}\end{array}\right.$£¬
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£¬A£¨2£¬0£©£¬B£¨0£¬1£©£¬Ö±ÏßBQ£¬APµÄбÂʾù´æÔÚÇÒ²»Îª0£®
¢ÙÖ¤Ã÷£ºÉèÖ±ÏßAPµÄ·½³ÌΪ£ºx=my+2£¬ÔòÖ±ÏßBQµÄ·½³ÌΪ£ºx=-my+m£¬
ÁªÁ¢$\left\{\begin{array}{l}{x=my+2}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥xÕûÀíµÃ£º£¨4+m2£©y2+4my=0£¬
¡àP£¨$\frac{8-2{m}^{2}}{4+{m}^{2}}$£¬-$\frac{4m}{4+{m}^{2}}$£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{x=-my+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥xÕûÀíµÃ£º£¨4+m2£©y2-2m2y+m2-4=0£¬
¡àQ£¨$\frac{8m}{4+{m}^{2}}$£¬$\frac{{m}^{2}-4}{4+{m}^{2}}$£©£¬
¡àÖ±ÏßlµÄбÂÊΪ$\frac{\frac{{m}^{2}-4}{4+{m}^{2}}+\frac{4m}{4+{m}^{2}}}{\frac{8m}{4+{m}^{2}}-\frac{8-2{m}^{2}}{4+{m}^{2}}}$=$\frac{{m}^{2}+4m-4}{2{m}^{2}+8m-8}$=$\frac{1}{2}$£»
¢Ú½â£ºÓÉ£¨1£©¿ÉÖªÖ±ÏßABµÄ·½³ÌΪ£ºx+2y-2=0£¬|AB|=$\sqrt{£¨2-0£©^{2}+£¨0-1£©^{2}}$=$\sqrt{5}$£¬
ÓÉ¢Ù¿ÉÖª£ºP£¨$\frac{8-2{m}^{2}}{4+{m}^{2}}$£¬-$\frac{4m}{4+{m}^{2}}$£©£¬Q£¨$\frac{8m}{4+{m}^{2}}$£¬$\frac{{m}^{2}-4}{4+{m}^{2}}$£©£¬
¡ßµãPÔÚµÚÒ»ÏóÏÞ£¬
¡à$\frac{1}{m}$£¼-$\frac{1}{2}$£¬¼´-2£¼m£¼0£¬
¡àµãPµ½Ö±ÏßABµÄ¾àÀëdP=$\frac{|\frac{8-2{m}^{2}}{4+{m}^{2}}-2¡Á\frac{4m}{4+{m}^{2}}-2|}{\sqrt{{1}^{2}+{2}^{2}}}$=-$\frac{4{m}^{2}+8m}{\sqrt{5}£¨4+{m}^{2}£©}$£¬
µãQµ½Ö±ÏßABµÄ¾àÀëdQ=$\frac{|\frac{8m}{4+{m}^{2}}+2¡Á\frac{{m}^{2}-4}{4+{m}^{2}}-2|}{\sqrt{{1}^{2}+{2}^{2}}}$=$\frac{16-8m}{\sqrt{5}£¨4+{m}^{2}£©}$£¬
¡à$\frac{{S}_{1}}{{S}_{2}}$=$\frac{\frac{1}{2}|AB|{d}_{P}}{\frac{1}{2}|AB|{d}_{Q}}$=$\frac{{m}^{2}+2m}{2m-8}$=$\frac{1}{2}$[£¨m-4£©+$\frac{24}{m-4}$+10]£¬
¡ß£¨4-m£©+$\frac{24}{4-m}$¡Ý2$\sqrt{£¨4-m£©•\frac{24}{4-m}}$=4$\sqrt{6}$£¬µ±ÇÒ½öµ±4-m=$\frac{24}{4-m}$¼´m=4-2$\sqrt{6}$ʱȡµÈºÅ£¬
¡à£¨m-4£©+$\frac{24}{m-4}$¡Ü-4$\sqrt{6}$£¬
¡à$\frac{{S}_{1}}{{S}_{2}}$µÄ×î´óֵΪ$\frac{1}{2}$£¨10-4$\sqrt{6}$£©=5-2$\sqrt{6}$£®

µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÉèÕýʵÊýx£¬yÂú×ãxy=$\frac{x-4y}{x+y}$£¬ÔòyµÄ×î´óÖµÊÇ$\sqrt{5}$-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®²»µÈʽlog0.3£¨x2-3x-4£©-log0.3£¨2x+10£©£¾0µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®£¨-2£¬-1£©B£®£¨4£¬7£©C£®£¨-2£¬-1£©¡È£¨4£¬7£©D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨1£¬2£©£¬$\overrightarrow{b}$=£¨-1£¬0£©£¬Èô£¨¦Ë$\overrightarrow{a}$+$\overrightarrow{b}$£©¡Í$\overrightarrow{b}$£¬ÔòʵÊý¦ËµÄֵΪ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬ÇÒx¡Ý0ʱ£¬f£¨x£©=log${\;}_{\frac{1}{2}}$£¨x+1£©£®
£¨1£©Çóf£¨0£©£¬f£¨-1£©µÄÖµ£»
£¨2£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®×ÀÃæÉÏÓдóСÁ½¿ÅÇò£¬Ï໥¿¿ÔÚÒ»Æð£®ÒÑÖª´óÇòµÄ°ë¾¶Îª9cm£¬Ð¡Çò°ë¾¶4cm£¬ÔòÕâÁ½¿ÅÇò·Ö±ðÓë×ÀÃæÏà½Ó´¥µÄÁ½µãÖ®¼äµÄ¾àÀëµÈÓÚ12 cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄÆ溯Êý£¬µ±x¡Ý0ʱ£¬f£¨x£©=x2+3x-1£¬Ôòµ±x£¼0ʱ£¬f£¨x£©µÄ½âÎöʽΪf£¨x£©=f£¨x£©=-x2+3x+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Ä³Ð£ÔÚ¶ÔѧÉúÊÇ·ñϲ»¶ÊýѧµÄ³éÑùµ÷²éÖУ¬Ëæ»ú³éÈ¡ÁË300ÃûѧÉú£¬Ïà¹ØµÄÊý¾ÝÈç±íËùʾ£º
ϲ»¶Êýѧ¿Î³Ì²»Ï²»¶Êýѧ¿Î³Ì×ܼÆ
ÄÐ3785122
Ů35143178
×ܼÆ72228300
ÓɱíÖÐÊý¾ÝÖ±¹Û·ÖÎö£¬¸ÃУѧÉúµÄÐÔ±ðÓëÊÇ·ñϲ»¶Êýѧ֮¼äÓйØϵ£¨Ìî¡°ÓС±»ò¡°ÎÞ¡±£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®²»µÈʽ£¨x+2£©£¨x-3£©£¾0µÄ½â¼¯Îª£¨-¡Þ£¬-2£©¡È£¨3£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸