·ÖÎö £¨1£©Í¨¹ý½«µã£¨1£¬$\frac{\sqrt{3}}{2}$£©´úÈëÍÖÔ²·½³Ì£¬½áºÏÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$¼ÆËã¼´µÃ½áÂÛ£»
£¨2£©Í¨¹ý£¨1£©¿ÉÖªA£¨2£¬0£©¡¢B£¨0£¬1£©£®¢Ùͨ¹ýÉèÖ±ÏßAPµÄ·½³ÌΪx=my+2¡¢Ö±ÏßBQµÄ·½³ÌΪx=-my+m£¬·Ö±ðÓëÍÖÔ²·½³ÌÁªÁ¢£¬¼ÆËã¿ÉÖªP£¨$\frac{8-2{m}^{2}}{4+{m}^{2}}$£¬-$\frac{4m}{4+{m}^{2}}$£©¡¢Q£¨$\frac{8m}{4+{m}^{2}}$£¬$\frac{{m}^{2}-4}{4+{m}^{2}}$£©£¬ÀûÓÃбÂʼÆË㹫ʽ¼ÆËã¼´¿É£»¢Úͨ¹ý£¨1£©¿ÉÖªÖ±ÏßABµÄ·½³ÌΪx+2y-2=0£¬|AB|=$\sqrt{5}$£¬Í¨¹ý¢Ù¿ÉÖªP£¨$\frac{8-2{m}^{2}}{4+{m}^{2}}$£¬-$\frac{4m}{4+{m}^{2}}$£©¡¢Q£¨$\frac{8m}{4+{m}^{2}}$£¬$\frac{{m}^{2}-4}{4+{m}^{2}}$£©£¬ÀûÓõãPÔÚµÚÒ»ÏóÏÞ¿ÉÖª-2£¼m£¼0£¬·Ö±ð¼ÆËã³öµãP¡¢Qµ½Ö±ÏßABµÄ¾àÀ룬ÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½¼ÆËã¡¢½áºÏ»ù±¾²»µÈʽ»¯¼ò¼´µÃ½áÂÛ£®
½â´ð £¨1£©½â£ºÒÀÌâÒ⣬$\left\{\begin{array}{l}{\frac{1}{{a}^{2}}+\frac{3}{4{b}^{2}}=1}\\{\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}=\frac{\sqrt{3}}{2}}\end{array}\right.$£¬
»¯¼òµÃ£º$\left\{\begin{array}{l}{4{b}^{2}+3{a}^{2}=4{a}^{2}{b}^{2}}\\{{a}^{2}=4{b}^{2}}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{{a}^{2}=4}\\{{b}^{2}=1}\end{array}\right.$£¬
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£¬A£¨2£¬0£©£¬B£¨0£¬1£©£¬Ö±ÏßBQ£¬APµÄбÂʾù´æÔÚÇÒ²»Îª0£®
¢ÙÖ¤Ã÷£ºÉèÖ±ÏßAPµÄ·½³ÌΪ£ºx=my+2£¬ÔòÖ±ÏßBQµÄ·½³ÌΪ£ºx=-my+m£¬
ÁªÁ¢$\left\{\begin{array}{l}{x=my+2}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥xÕûÀíµÃ£º£¨4+m2£©y2+4my=0£¬
¡àP£¨$\frac{8-2{m}^{2}}{4+{m}^{2}}$£¬-$\frac{4m}{4+{m}^{2}}$£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{x=-my+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥xÕûÀíµÃ£º£¨4+m2£©y2-2m2y+m2-4=0£¬
¡àQ£¨$\frac{8m}{4+{m}^{2}}$£¬$\frac{{m}^{2}-4}{4+{m}^{2}}$£©£¬
¡àÖ±ÏßlµÄбÂÊΪ$\frac{\frac{{m}^{2}-4}{4+{m}^{2}}+\frac{4m}{4+{m}^{2}}}{\frac{8m}{4+{m}^{2}}-\frac{8-2{m}^{2}}{4+{m}^{2}}}$=$\frac{{m}^{2}+4m-4}{2{m}^{2}+8m-8}$=$\frac{1}{2}$£»
¢Ú½â£ºÓÉ£¨1£©¿ÉÖªÖ±ÏßABµÄ·½³ÌΪ£ºx+2y-2=0£¬|AB|=$\sqrt{£¨2-0£©^{2}+£¨0-1£©^{2}}$=$\sqrt{5}$£¬
ÓÉ¢Ù¿ÉÖª£ºP£¨$\frac{8-2{m}^{2}}{4+{m}^{2}}$£¬-$\frac{4m}{4+{m}^{2}}$£©£¬Q£¨$\frac{8m}{4+{m}^{2}}$£¬$\frac{{m}^{2}-4}{4+{m}^{2}}$£©£¬
¡ßµãPÔÚµÚÒ»ÏóÏÞ£¬
¡à$\frac{1}{m}$£¼-$\frac{1}{2}$£¬¼´-2£¼m£¼0£¬
¡àµãPµ½Ö±ÏßABµÄ¾àÀëdP=$\frac{|\frac{8-2{m}^{2}}{4+{m}^{2}}-2¡Á\frac{4m}{4+{m}^{2}}-2|}{\sqrt{{1}^{2}+{2}^{2}}}$=-$\frac{4{m}^{2}+8m}{\sqrt{5}£¨4+{m}^{2}£©}$£¬
µãQµ½Ö±ÏßABµÄ¾àÀëdQ=$\frac{|\frac{8m}{4+{m}^{2}}+2¡Á\frac{{m}^{2}-4}{4+{m}^{2}}-2|}{\sqrt{{1}^{2}+{2}^{2}}}$=$\frac{16-8m}{\sqrt{5}£¨4+{m}^{2}£©}$£¬
¡à$\frac{{S}_{1}}{{S}_{2}}$=$\frac{\frac{1}{2}|AB|{d}_{P}}{\frac{1}{2}|AB|{d}_{Q}}$=$\frac{{m}^{2}+2m}{2m-8}$=$\frac{1}{2}$[£¨m-4£©+$\frac{24}{m-4}$+10]£¬
¡ß£¨4-m£©+$\frac{24}{4-m}$¡Ý2$\sqrt{£¨4-m£©•\frac{24}{4-m}}$=4$\sqrt{6}$£¬µ±ÇÒ½öµ±4-m=$\frac{24}{4-m}$¼´m=4-2$\sqrt{6}$ʱȡµÈºÅ£¬
¡à£¨m-4£©+$\frac{24}{m-4}$¡Ü-4$\sqrt{6}$£¬
¡à$\frac{{S}_{1}}{{S}_{2}}$µÄ×î´óֵΪ$\frac{1}{2}$£¨10-4$\sqrt{6}$£©=5-2$\sqrt{6}$£®
µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | £¨-2£¬-1£© | B£® | £¨4£¬7£© | C£® | £¨-2£¬-1£©¡È£¨4£¬7£© | D£® | ∅ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 0 | B£® | 1 | C£® | 2 | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
ϲ»¶Êýѧ¿Î³Ì | ²»Ï²»¶Êýѧ¿Î³Ì | ×Ü¼Æ | |
ÄÐ | 37 | 85 | 122 |
Å® | 35 | 143 | 178 |
×Ü¼Æ | 72 | 228 | 300 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com