精英家教网 > 高中数学 > 题目详情

【题目】2015 年 12 月,华中地区数城市空气污染指数“爆表”,此轮污染为 2015 年以来最严重的污染过程,为了探究车流量与的浓度是否相关,现采集到华中某城市 2015 年 12 月份某星期星期一到星期日某一时间段车流量与的数据如表:

时间

星期一

星期二

星期三

星期四

星期五

星期六

星期日

车流量(万辆)

1

2

3

4

5

6

7

的浓度(微克/立方米)

28

30

35

41

49

56

62

(1)由散点图知具有线性相关关系,求关于的线性回归方程;(提示数据:

(2)利用(1)所求的回归方程,预测该市车流量为 12 万辆时的浓度.

参考公式:回归直线的方程是

其中.

【答案】(1) ;(2) 车流量为 12 万辆时, 的浓度为91微克/立方米.

【解析】试题分析:(1)根据公式求出,利用求得,可写出线性回归方程;

(2)根据(1)的线性回归方程,代入12求出的浓度;

试题解析:(1)由数据可得:

,(注:用另一个公式求运算量小些)

关于的线性回归方程为.

(2)当车流量为12万辆时,即时, .故车流量为 12 万辆时, 的浓度为91微克/立方米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合A,集合B,若,则实数的取值范围___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,M、N、K分别是正方体ABCD﹣A1B1C1D1的棱AB,CD,C1D1的中点.求证:
(1)AN∥平面A1MK;
(2)MK⊥平面A1B1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到直线的距离是它到点的距离的倍.

(1)求动点的轨迹的方程;

(2)设轨迹上一动点满足: ,其中是轨迹上的点,且直线的斜率之积为,若为一动点, 为两定点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列,定义为数列的一阶差分数列,其中,( ),设

(1)若,求证: 是等比数列,并求出的通项公式;

(2)若,又数列满足:

①求数列的前

②求证:数列中的任意一项总可以表示成该数列中其他两项之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(﹣3x)+1,则f(lg2)+f(lg)=(  )
A.-1
B.0
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2 , AD=2,求四边形绕AD旋转一周所围成几何体的表面积及体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ln(x2﹣x)的定义域为(  )
A.(0,1)
B.[0,1]
C.(﹣∞,0)∪(1,+∞)
D.(﹣∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=π/2,AB=BC=2AD=4,E,F分别是AB,CD上的点,EF∥BC,AE=x,G是BC的中点,沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF.
(1)当x=2时,①求证:BD⊥EG;②求二面角D﹣BF﹣C的余弦值;
(2)三棱锥D﹣FBC的体积是否可能等于几何体ABE﹣FDC体积的一半?并说明理由.

查看答案和解析>>

同步练习册答案