精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知双曲线
x2
a2
-
y2
b2
=1 (a>0,b>0)
的右准线交x轴于A,虚轴的下端点为B,过双曲线的右焦点F(c,0)作垂直于x轴的直线交双曲线于P,过点A、B的直线与FP相交于点D,且2
OD
=
OF
+
OP
(O为坐标原点).
(Ⅰ)求双曲线的离心率;
(Ⅱ)若a=2,过点(0,-2)的直线l交该双曲线于不同两点M、N,求
OM
ON
的取值范围.
分析:(Ⅰ)根据题意可分别表示出点A、B、P、F的坐标,则直线AB的方程可表示出,把x=c代入求得y,则d点坐标可得,根据2
OD
=
OF
+
OP
,可知2(c,
b3
a2
)=(c,0)+(c,
b2
a
)
,求得a和b的关系,进而求得a和c的关系,则双曲线离心率可得.
(Ⅱ)根据(1)中a和b的关系式根据a可求得b,则双曲线方程可得,设出直线l的方程与双曲线方程联立消去y,根据根据判别式求得k的范围,根据韦达定理表示出x1+x2和x1x2的表达式,进而表示出
OM
ON
,根据k的范围确定其取值范围.
解答:解:(Ⅰ)点A、B、P、F的坐标分别为A(
a2
c
,0)
,B(0,-b),P(c,
b2
a
)
,F(c,0),
直线AB的方程为
x
a2
c
+
y
-b
=1
,令x=c,则y=
b3
a2
,知D(c,
b3
a2
)

2
OD
=
OF
+
OP
,∴2(c,
b3
a2
)=(c,0)+(c,
b2
a
)
,则
2b3
a2
=
b2
a
,∴a=2b,
e=
c
a
=
a2+b2
a
=
1+(
b
a
)
2
=
5
2


(Ⅱ)∵a=2,∴b=1,双曲线的方程是
x2
4
-y2=1
,知直线l的斜率存在,
设直线l方程为y=kx-2,联立方程组
x2
4
-y2=1
y=kx-2

得(1-4k2)x2+16kx-20=0,设M(x1,y1),N(x2,y2),
1-4k2≠0
△=(16k)2+80(1-4k2)>0
解得k2
5
4
k2
1
4

x1+x2=
16k
4k2-1
x1x2=
20
4k2-1
OM
ON
=x1x2+y1y2=x1x2+(kx1-2)(kx2-2)=(1+k2)x1x2-2k(x1+x2)+4
=
20(1+k2)
4k2-1
-
32k2
4k2-1
+4=
4k2+16
4k2-1
=1+
17
4k2-1

0≤k2
5
4
k2
1
4
,∴
17
4k2-1
∈(-∞,-17]∪(
17
4
,+∞)

OM
ON
的范围是(-∞,-16]∪(
21
4
,+∞)
点评:本题主要考查了双曲线的简单性质.考查了直线与圆锥曲线的位置关系.综合考查了学生基础知识的掌握和理解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知双曲线
x2
a2
-
y2
b2
=1
(b>a>0)且a∈[1,2],它的左、右焦点为F1,F2,左右顶点分别为A、B.过F2作圆x2+y2=a2的切线,切点为T,交双曲线与P、Q两点.
(Ⅰ)求证直线PQ与双曲线的一条渐近线垂直.
(Ⅱ)若M为PF2的中点,O为坐标原点,|OM|-|MT|=1,|PQ|=λ|AB|,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知双曲线x2-
y2
3
=1
,A,C分别是虚轴的上、下顶点,B是左顶点,F为左焦点,直线AB与FC相交于点D,则∠BDF的余弦值是(  )
A、
7
7
B、
5
7
7
C、
7
14
D、
5
7
14

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)如图,已知双曲线C1
x2
2
-y2=1
,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1-C2型点”
(1)在正确证明C1的左焦点是“C1-C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”;
(3)求证:圆x2+y2=
1
2
内的点都不是“C1-C2型点”

查看答案和解析>>

科目:高中数学 来源:2013年全国普通高等学校招生统一考试文科数学(上海卷解析版) 题型:填空题

如图,已知双曲线C1,曲线C2:|y|=|x|+1,P是平面内一点,若存在过点P的直线与C1,C2都有公共点,则称P为“C1﹣C2型点“

(1)在正确证明C1的左焦点是“C1﹣C2型点“时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);

(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1﹣C2型点”;

(3)求证:圆x2+y2=内的点都不是“C1﹣C2型点”

 

查看答案和解析>>

科目:高中数学 来源:湖北省模拟题 题型:解答题

如图,已知双曲线x2-y2=1的左、右顶点分别为A1、A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2)。
(1)求k的取值范围,并求x2-x1的最小值;
(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么,k1·k2是定值吗?证明你的结论。

查看答案和解析>>

同步练习册答案