精英家教网 > 高中数学 > 题目详情

【题目】函数.

(1)当 时,求的单调减区间;

(2)时,函数,若存在,使得恒成立,求实数的取值范围.

【答案】(1)见解析 (2)

【解析】试题分析:

(1)原函数的导函数为,对实数n分类讨论可得:

①当时, 的单调减区间为

②当时, 的单调减区间为

③当时,减区间为.

(2)由题意结合恒成立的条件构造新函数设,结合函数h(t)的性质分类讨论可得实数的取值范围是.

试题解析:

(1),定义域为

①当时, ,此时的单调减区间为

②当时, 时, ,此时的单调减区间为

③当时, 时, ,此时减区间为.

(2)时,

,∴,即

,∴,∴.

①当时,

,∴上单调递增,因此

②当时,令,得:

,得: ,故上单调递减,此时.

综上所述, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=ax(a>0且a≠1)在[1,2]上的最大值是M,最小值是m,且M=2m,则实数a=( )
A.
B.2
C.
且2
D.
或2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z1 , z2满足|z1|=|z2|=1,|z1﹣z2|= ,则|z1+z2|等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有这样一则问题:“今有良马与弩马发长安,至齐,齐去长安三千里,良马初日行一百九十三里,日增一十三里;弩马初日行九十七里,日减半里,良马先至齐,复还迎弩马.”则现有如下说法:

①弩马第九日走了九十三里路;

②良马前五日共走了一千零九十五里路;

③良马和弩马相遇时,良马走了二十一日.

则以上说法错误的个数是( )个

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动圆M与圆(x﹣1)2+y2=1相外切且与y轴相切,则动圆M的圆心的轨迹记C,
(1)求轨迹C的方程;
(2)定点A(3,0)到轨迹C上任意一点的距离|MA|的最小值;
(3)经过定点B(﹣2,1)的直线m,试分析直线m与轨迹C的公共点个数,并指明相应的直线m的斜率k是否存在,若存在求k的取值或取值范围情况[要有解题过程,没解题方程只有结论的只得结论分].

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若对于任意x∈R,都有f(x﹣2)≤f(x),则实数a的取值范围是(
A.[﹣ ]
B.[﹣ ]
C.[﹣ ]
D.[﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),曲线在点处的切线与直线垂直.

(1)试比较的大小,并说明理由;

(2)若函数有两个不同的零点,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos(θ﹣ )=1,A,B分别为C与x轴,y轴的交点.
(1)写出C的直角坐标方程,并求A,B的极坐标;
(2)设M为曲线C上的一个动点, (λ>0),| || |=2,求动点Q的极坐标方程.

查看答案和解析>>

同步练习册答案