精英家教网 > 高中数学 > 题目详情
某渔业公司年初用49万元购买一艘捕鱼船,第一年各种费用6万元,以后每年都增加2万元,每年捕鱼收益25万元.
(1)问第几年开始获利?
(2)若干年后,有两种处理方案:①年平均获利最大时,以18万元出售该渔船;②总纯收入获利最大时,以9万元出售该渔船.问哪种方案最合算?
(1)渔业公司第3年开始获利.(2)方案①较合算.

试题分析:(1)由题意列出获利y与年份n的函数关系,然后求解不等式得到n的范围,根据n是正的自然数求得n的值;
(2)用获利除以年份得到年平均获利,利用不等式求出最大值,求出获得的总利润,利用配方法求出获得利润的最大值,求出总获利,比较后即可得到答案.
试题解析:(1)第n年开始获利,设获利为y万元,则
y=25n-[6n+×2]-49=-n2+20n-49   2分
由y=-n2+20n-49>0得10-<n<10+        4分
又∵n∈N*,∴n=3,4
∴n=3时,即该渔业公司第3年开始获利.   5分
(2)方案①:年平均获利为=-n-+20≤-2+20=6(万元)      7分
当n=7时,年平均获利最大,若此时卖出,共获利6×7+18=60(万元)      8分
方案②:y=-n2+20n-49=-(n-10)2+51
当且仅当n=10时,即该渔业公司第10年总额最大,若此时卖出,共获利51+9=60万元   11分
因为两种方案获利相等,但方案②所需的时间长,所以方案①较合算.    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数,则下列哪个函数与表示同一个函数(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如果n件产品中任取一件样品是次品的概率为,则认为这批产品中有件次品。某企业的统计资料显示,产品中发生次品的概率p与日产量n满足,有已知每生产一件正品可赢利a元,如果生产一件次品,非但不能赢利,还将损失元().
(1)求该企业日赢利额的最大值;
(2)为保证每天的赢利额不少于日赢利额最大值的50%,试求该企业日产量的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某厂生产A产品的年固定成本为250万元,若A产品的年产量为万件,则需另投入成本(万元)。已知A产品年产量不超过80万件时,;A产品年产量大于80万件时,。因设备限制,A产品年产量不超过200万件。现已知A产品的售价为50元/件,且年内生产的A产品能全部销售完。设该厂生产A产品的年利润为L(万元)。
(1)写出L关于的函数解析式
(2)当年产量为多少时,该厂生产A产品所获的利润最大?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

命题“?x2>1,x>1”的否定是(  )
A.?x2>1,x≤1B.?x2≤1,x≤1C.?x2>1,x≤1D.?x2≤1,x≤1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数=的最小值为________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数的最小值为
⑴求函数的解析式;
⑵设,若上是减函数,求实数的取值范围;
⑶设函数,若此函数在定义域范围内不存在零点,求实数的取值范围.[

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

牛奶保鲜时间因储藏温度的不同而不同,假定保鲜时间与储藏温度的关系为指数型函数y=kax,若牛奶在0℃的冰箱中,保鲜时间约为100 h,在5℃的冰箱中,保鲜时间约为80 h,那么在10℃时保鲜时间约为(  )
A.49 hB.56 hC.64 hD.72 h

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则=___________________.

查看答案和解析>>

同步练习册答案