精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中常数.

1)令,将函数的图像向左平移个单位,再向上平移1个单位,得到函数,求函数的解析式;

2)若上单调递增,求的取值范围;

3)在(1)的条件下的函数的图像,区间满足:上至少含有30个零点,在所有满足上述条件的中,求的最小值.

【答案】1;(2;(3

【解析】

1)根据正弦函数平移“左加右减、上加下减”的法则即可求得

2)利用范围可求得的范围,根据单调性可得不等式组,解不等式组求得;由可求得,两个范围取交集得到最终结果;

3)令可求得零点,进而得到相邻零点之间的距离;若最小,知均为零点,此时在恰有个零点,从而得到在至少有一个零点;根据相邻零点之间距离即可得到满足的条件,进而求得所求的最小值.

1

,即

2 时,

,解得:

的取值范围为

3)令得:

解得:

相邻两个零点之间的距离为

最小,则均为的零点,此时在区间,…,分别恰有个零点

在区间恰有个零点 至少有一个零点

,即

检验可知,在恰有个零点,满足题意

的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

(1)求的解析式;

(2)试判断的单调性,并用定义法证明;

3)若存在,使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数), ).

(1)如果是关于的不等式的解,求实数的取值范围;

(2)判断的单调性,并说明理由;

(3)证明:函数存在零点q使得成立的充要条件是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】省环保厅对三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:

优(个)

28

良(个)

32

30

已知在这180个数据中随机抽取一个,恰好抽到记录城市空气质量为优的数据的概率为0.2.

(1)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在城中应抽取的数据的个数;

(2)已知 ,求在城中空气质量为优的天数大于空气质量为良的天数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的个数是(

①正三棱锥的顶点在底面的射影到底面各顶点的距离相等;

②有两个侧面是矩形的棱柱是直棱柱;

③两个底画平行且相似的多面体是棱台;

④底面是正三角形,其余各面都是等腰三角形的三棱锥一定是正三棱锥.

A.0B.1C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示是一个正三棱台,而且下底面边长为2,上底面边长和侧棱长都为1.O分别是下底面与上底面的中心.

1)求棱台的斜高;

2)求棱台的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解该校多媒体教学普及情况,根据年龄按分层抽样的方式调查了该校50名教师,他们的年龄频数及使用多媒体教学情况的人数分布如下表:

(1)由以上统计数据完成下面的列联表,并判断是否有的把握认为以40岁为分界点对是否经常使用多媒体教学有差异?

附:.

(2)若采用分层抽样的方式从年龄低于40岁且经常使用多媒体的教师中选出6人,再从这6人中随机抽取2人,求这2人中至少有1人年龄在30-39岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图1是由矩形和菱形组成的一个平面图形,其中,将其沿折起使得重合,连结,如图2.

(1)证明图2中的四点共面,且平面平面

(2)求图2中的四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形,平面分别是线段的中点,.

(1)求证:∥平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案