精英家教网 > 高中数学 > 题目详情

【题目】如图,已知长方形ABCD中,AB=2 ,AD= ,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM (Ⅰ)求证:AD⊥BM
(Ⅱ)若点E是线段DB上的一动点,问点E在何位置时,二面角E﹣AM﹣D的余弦值为

【答案】证明:(Ⅰ)∵长方形ABCD中,AB=2 ,AD= ,M为DC的中点, ∴AM=BM=2,∴BM⊥AM.
∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM平面ABCM
∴BM⊥平面ADM
∵AD平面ADM∴AD⊥BM;
(Ⅱ)建立如图所示的直角坐标系,设
则平面AMD的一个法向量 =(0,1,0), = + =(1﹣λ,2λ,1﹣λ), =(﹣2,0,0),
设平面AME的一个法向量为 =(x,y,z),则
取y=1,得x=0,z=
=(0,1, ),
∵cos< >= = ,∴求得
故E为BD的中点.

【解析】(Ⅰ)根据线面垂直的性质证明BM⊥平面ADM即可证明AD⊥BM(Ⅱ)建立空间坐标系,求出平面的法向量,利用向量法建立二面角的夹角关系,解方程即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点F为抛物线y 2=﹣8x的焦点,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且|AF|=4,则|PA|+|PO|的最小值为(
A.6
B.
C.
D.4+2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,AB=BC=4,AA1=2,则直线BC1与平面BB1D1D所成角的正弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 上有最大值1和最小值0,设 .
(1)求 的值;
(2)若不等式 上有解,求实数 的取值范围;
(3)若方程 ( 为自然对数的底数)有三个不同的实数解,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=x3+ax2+bx﹣a2﹣7a在x=1处取得极大值10,则 的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,下列图象中能表示定义域和值域都是 的函数的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为响应国家节能减排建设的号召,唤起人们从自己身边的小事做起,开展了以“再小的力量也是一种支持”为主题的宣传教育活动,其中有两则公益广告: ①80部手机,一年就会增加一吨二氧化氮的排放.
②人们在享受汽车带了的便捷舒适的同时,却不得不呼吸汽车排放的尾气.
活动组织者为了解是市民对这两则广告的宣传效果,随机对10﹣60岁的人群抽查了n人,并就两个问题对选取的市民进行提问,其抽样人数频率分布直方图如图所示,宣传效果调查结果如表所示.
宣传效果调查表

广告一

广告二

回答正
确人数

占本组
人数频率

回答正
确人数

占本组
人数频率

[10,20)

90

0.5

45

a

[20,30)

225

0.75

k

0.8

[30,40)

b

0.9

252

0.6

[40,50)

160

c

120

d

[50,60]

10

e

f

g


(1)分别写出n,a,b,c,d的值.
(2)若将表中的频率近似看作各年龄组正确回答广告内容的概率,规定正确回答广告一的内容得30元,广告二的内容得60元.组织者随机请一家庭的两成员(大人45岁,孩子17岁),指定大人回答广告一的内容,孩子回答广告二的内容,求该家庭获得奖金数ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,李先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1、L2两条路线,L1路线上有A1、A2、A3三个路口,各路口遇到红灯的概率均为 ;L2路线上有B1、B2两个路口,各路口遇到红灯的概率依次为
(1)若走L1路线,求最多遇到1次红灯的概率;
(2)若走L2路线,求遇到红灯次数X的数学期望;
(3)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,若 在区间(0,1)上只有一个极值点,则a的取值范围为

查看答案和解析>>

同步练习册答案