精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,底面为平行四边形, .

(Ⅰ)证明: 平面

(Ⅱ)求点到平面的距离.

【答案】(1)详见解析;(2)

【解析】试题分析:(Ⅰ)首先利用正弦定理求得,由此可推出,然后利用勾股定理推出,从而使问题得证;(Ⅱ)利用等积法将问题转化为求解即可.

试题解析:(Ⅰ)证明:在中, ,由已知

解得,所以,即,可求得

中,

, , ,

,∴,

平面, ,∴平面

(Ⅱ)由题意可知, 平面,则到面的距离等于到面的距离,

中,易求

,即,则

即点到平面的距离为

点睛:垂直、平行关系证明中应用转化与化归思想的常见类型,(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图甲,已知矩形中, 上一点,且,垂足为,现将矩形沿对角线折起,得到如图乙所示的三棱锥.

(Ⅰ)在图乙中,若,求的长度;

(Ⅱ)当二面角等于时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前项n和为Sn , 且3Sn=4an﹣4.又数列{bn}满足bn=log2a1+log2a2+…+log2an
(1)求数列{an}、{bn}的通项公式;
(2)若 ,求使得不等式 恒成立的实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).

1)求的解析式及单调递减区间;

2)是否存在常数,使得对于定义域内的任意恒成立,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sin2x的图象向右平移φ(0<φ< )个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,则φ=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2 , x∈R,则实数a= , b=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xm ,且f(3)=
(1)求函数f(x)的解析式,并判断函数f(x)的奇偶性.
(2)证明函数f(x)在(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)命题“ ”为假命题,求实数a的取值范围;
(Ⅱ)若“x2+2x﹣8<0”是“x﹣m>0”的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于x的不等式4x+x﹣a≤ 在x∈[0, ]上恒成立,则实数a的取值范围是(
A.(﹣∞,﹣ ]
B.(0,1]
C.[﹣ ,1]
D.[1,+∞)

查看答案和解析>>

同步练习册答案