精英家教网 > 高中数学 > 题目详情

【题目】为迎接2017年“双”,“双”购物狂欢节的来临,某青花瓷生产厂家计划每天生产汤碗、花瓶、茶杯这三种瓷器共个,生产一个汤碗需分钟,生产一个花瓶需分钟,生产一个茶杯需分钟,已知总生产时间不超过小时.若生产一个汤碗可获利润元,生产一个花瓶可获利润元,生产一个茶杯可获利润元.

(1)使用每天生产的汤碗个数与花瓶个数表示每天的利润(元);

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

【答案】(1);(2)元.

【解析】试题分析:(1)由题意可得利润ω=5x+6y+3(100-xy)=2x+3y+300;(2)根据题意得到约束条件和目标函数,根据线性规划的解题步骤求解即可。

试题解析:

(1)依题意每天生产的茶杯个数为100-xy

所以利润ω=5x+6y+3(100-xy)=2x+3y+300.

(2)由条件得约束条件为

目标函数为ω=2x+3y+300,

作出不等式组表示的平面区域(如图所示),

作初始直线l0:2x+3y=0,平移l0,由图形知当l0经过点A时,直线在y轴上的截距最大,此时ω有最大值,

,解得

∴最优解为A(50,50),

元.

故每天生产汤碗50个,花瓶50个,茶杯0个时利润最大,且最大利润为550元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图1, 在直角梯形中, 为线段的中点. 沿折起,使平面 平面,得到几何体,如图2所示.

1)求证: 平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程为

(Ⅰ)求函数的单调区间;

(Ⅱ)若为整数,当时, 恒成立,求的最大值(其中的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若函数处的切线平行于直线,求实数的值;

(Ⅱ)讨论上的单调性;

(Ⅲ)若存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆 上的一点,椭圆的右焦点为,斜率为的直线交椭圆两点,且三点互不重合.

(1)求椭圆的方程;

(2)求证:直线 的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差大于零的等差数列的前项和为,且

(1)求数列的通项公式;

(2)若数列是等差数列,且,求非零常数的值.

(3)设为数列的前项和,是否存在正整数使得任意的成立若存在求出的最小值若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a|x+b|(a>0,a≠1,b∈R).
(1)若f(x)为偶函数,求b的值;
(2)若f(x)在区间[2,+∞)上是增函数,试求a、b应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的是一个几何体的直观图和三视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形).

(1)求四棱锥P-ABCD的体积

(2)若G为BC上的动点,求证AEPG.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家具厂有方木料,五合板,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料、五合板;生产每个书橱需要方木枓、五合板.出售一张书桌可获利润元,出售一个书橱可获利润元,怎样安排生产可使所得利润最大?最大利润为多少?

查看答案和解析>>

同步练习册答案