精英家教网 > 高中数学 > 题目详情

【题目】数列{an}中,a1=8,a4=2,且满足an+2﹣2an+1+an=0,n∈N*
(1)求数列{an}的通项;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn

【答案】
(1)解:由题意,an+2﹣an+1=an+1﹣an

∴数列{an}是以8为首项,﹣2为公差的等差数列

∴an=10﹣2n,n∈N


(2)解:(2)∵an=10﹣2n,令an=0,得n=5.

当n>5时,an<0;当n=5时,an=0;当n<5时,an>0.

∴当n>5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5﹣(a6+a7+…+an)=T5﹣(Tn﹣T5)=2T5﹣Tn,Tn=a1+a2+…+an

当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=Tn


【解析】(1)首先判断数列{an}为等差数列,由a1=8,a4=2求出公差,代入通项公式即得.(2)首先判断哪几项为非负数,哪些是负数,从而得出当n>5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5﹣(a6+a7+…+an)求出结果;当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an当,再利用等差数列的前n项和公式求出答案.
【考点精析】通过灵活运用数列的前n项和和数列的通项公式,掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点.

(1)求椭圆的方程;

(2)过点且斜率大于0的直线与椭圆相交于点 ,直线 轴相交于 两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=1,an+1 =1,记Sn=a12+a22+…+an2 , 若S2n+1﹣Sn 对任意n∈N*恒成立,则正整数m的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax+6.
(1)当a=5时,解不等式f(x)<0;
(2)若不等式f(x)>0的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin(2x+ )的图象,只需将y=sin2x的图象上每一个点(
A.横坐标向左平移 个单位
B.横坐标向右平移 个单位
C.横坐标向左平移 个单位
D.横坐标向右平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆C: (a>b>0).称圆心在原点O,半径为 的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F( ,0),其短轴上的一个端点到点F的距离为
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1 , l2 , 使得l1 , l2与椭圆C都只有一个交点,试判断l1 , l2是否垂直,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角所对的边分别为,已知.

(1)求证:成等差数列;

(2)若的面积为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x≤﹣1或x≥5},集合B={x|2a≤x≤a+2}.
(1)若a=﹣1,求A∩B和A∪B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;设有一个回归方程,变量增加一个单位时,平均增加5个单位;线性回归方程必过在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是(

A.0 B.1 C. 2 D.3

查看答案和解析>>

同步练习册答案