分析 由已知向量的坐标求得向量$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的坐标,再结合两向量的数量积为0得答案.
解答 解:∵$\overrightarrow{a}$=(sin15°,cos15°),$\overrightarrow{b}$=(cos15°,sin15°),
∴$\overrightarrow{a}$+$\overrightarrow{b}$=(sin15°+cos15°,sin15°+cos15°),
$\overrightarrow{a}$-$\overrightarrow{b}$=(sin15°-cos15°,cos15°-sin15°).
∵($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=sin215°-cos215°+cos215°-sin215°=0.
∴向量$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为90°.
故答案为:90°.
点评 本题考查平面向量的坐标加减法运算,考查由数量积求夹角公式,是基础的计算题.
科目:高中数学 来源: 题型:选择题
A. | 5 | B. | 3 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | 1 | C. | -1 | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com