【题目】已知等差数列{an}的公差不为零,a1=25,且a1 , a11 , a13成等比数列.
(1)求{an}的通项公式;
(2)求a1+a4+a7+…+a3n﹣2 .
【答案】
(1)解:设等差数列{an}的公差为d≠0,
由题意a1,a11,a13成等比数列,∴ ,
∴ ,化为d(2a1+25d)=0,
∵d≠0,∴2×25+25d=0,解得d=﹣2.
∴an=25+(n﹣1)×(﹣2)=﹣2n+27.
(2)解:由(1)可得a3n﹣2=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6为公差的等差数列.
∴Sn=a1+a4+a7+…+a3n﹣2=
=
=﹣3n2+28n.
【解析】(1)设等差数列{an}的公差为d≠0,利用成等比数列的定义可得, ,再利用等差数列的通项公式可得 ,化为d(2a1+25d)=0,解出d即可得到通项公式an;(2)由(1)可得a3n﹣2=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6为公差的等差数列.利用等差数列的前n项和公式即可得出a1+a4+a7+…+a3n﹣2 .
【考点精析】解答此题的关键在于理解等差数列的通项公式(及其变式)的相关知识,掌握通项公式:或,以及对等比数列的通项公式(及其变式)的理解,了解通项公式:.
科目:高中数学 来源: 题型:
【题目】为宣传平潭综合试验区的“国际旅游岛”建设,试验区某旅游部门开发了一种旅游纪念产品,每件产品的成本是12元,销售价是16元,月平均销售件。后该旅游部门通过改进工艺,在保证产品成本不变的基础上,产品的质量和技术含金量提高,于是准备将产品的售价提高。经市场分析,如果产品的销售价提高的百分率为,那么月平均销售量减少的百分率为。记改进工艺后,旅游部门销售该纪念品的月平均利润是(元).
(1)写出与的函数关系式;
(2)改进工艺后,确定该纪念品的售价,使该旅游部门销售该纪念品的月平均利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知几何体A﹣BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,已知几何体A﹣BCED的体积为16.
(1)求实数a的值;
(2)将直角三角形△ABD绕斜边AD旋转一周,求该旋转体的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆和抛物线有公共焦点, 的中心和的顶点都在坐标原点,过点的直线与抛物线分别相交于两点(其中点在第四象限内).
(1)若,求直线的方程;
(2)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,点,曲线 ,以极点为坐标原点,极轴为轴正半轴建立直角坐标系.
(1)在直角坐标系中,求点的直角坐标及曲线的参数方程;
(2)设点为曲线上的动点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com