精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}的公差不为零,a1=25,且a1 , a11 , a13成等比数列.
(1)求{an}的通项公式;
(2)求a1+a4+a7+…+a3n2

【答案】
(1)解:设等差数列{an}的公差为d≠0,

由题意a1,a11,a13成等比数列,∴

,化为d(2a1+25d)=0,

∵d≠0,∴2×25+25d=0,解得d=﹣2.

∴an=25+(n﹣1)×(﹣2)=﹣2n+27.


(2)解:由(1)可得a3n2=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6为公差的等差数列.

∴Sn=a1+a4+a7+…+a3n2=

=

=﹣3n2+28n.


【解析】(1)设等差数列{an}的公差为d≠0,利用成等比数列的定义可得, ,再利用等差数列的通项公式可得 ,化为d(2a1+25d)=0,解出d即可得到通项公式an;(2)由(1)可得a3n2=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6为公差的等差数列.利用等差数列的前n项和公式即可得出a1+a4+a7+…+a3n2
【考点精析】解答此题的关键在于理解等差数列的通项公式(及其变式)的相关知识,掌握通项公式:,以及对等比数列的通项公式(及其变式)的理解,了解通项公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为宣传平潭综合试验区的“国际旅游岛”建设,试验区某旅游部门开发了一种旅游纪念产品,每件产品的成本是12元,销售价是16元,月平均销售件。后该旅游部门通过改进工艺,在保证产品成本不变的基础上,产品的质量和技术含金量提高,于是准备将产品的售价提高。经市场分析,如果产品的销售价提高的百分率为,那么月平均销售量减少的百分率为。记改进工艺后,旅游部门销售该纪念品的月平均利润是(元).

(1)写出的函数关系式;

(2)改进工艺后,确定该纪念品的售价,使该旅游部门销售该纪念品的月平均利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知几何体A﹣BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,已知几何体A﹣BCED的体积为16.

(1)求实数a的值;
(2)将直角三角形△ABD绕斜边AD旋转一周,求该旋转体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆和抛物线有公共焦点 的中心和的顶点都在坐标原点,过点的直线与抛物线分别相交于两点(其中点在第四象限内).

(1)若,求直线的方程;

(2)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体的棱长为的交点,的中点.

(I)求证:直线平面

(II)求证:平面

(III)二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,点,曲线 ,以极点为坐标原点,极轴为轴正半轴建立直角坐标系.

(1)在直角坐标系中,求点的直角坐标及曲线的参数方程;

(2)设点为曲线上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱柱中, ,点的中点.

(I)求证:

(II)若点上的点且满足若二面角的余弦值为求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 中点, 交于点

Ⅰ)求证: 平面

Ⅱ)求证: 平面

Ⅲ)在线段上是否存在点,使得?请说明理由.

查看答案和解析>>

同步练习册答案