精英家教网 > 高中数学 > 题目详情
5.有下列四个命题:
①y=2x与y=log2x互为反函数,其图象关于直线y=x对称;
②已知函数f(x-1)=x2-2x+1,则f(5)=26;
③当a>0且a≠1时,函数f(x)=ax-2-3必过定点(2,-2);
④函数y=($\frac{1}{2}$)x的值域是(0,+∞).
你认为正确命题的序号是①③④(把正确的序号都写上).

分析 ①由y=2x与,x=log2y,由反函数的定义可知正确;
②f(6-1)=36-12+1=25,故错误;
③f(2)=a0-3=-2,必过定点(2,-2),故正确;
④由指数函数性质可知函数y=($\frac{1}{2}$)x的值域是(0,+∞),故正确.

解答 解:①由y=2x与,x=log2y,
由反函数的定义知y=2x与y=log2x互为反函数,且其图象关于直线y=x对称,故正确;
②f(x-1)=x2-2x+1,
∴f(6-1)=36-12+1=25,故错误;
③f(2)=a0-3=-2,必过定点(2,-2),故正确;
④由指数函数性质可知函数y=($\frac{1}{2}$)x的值域是(0,+∞),故正确.
故答案为:①③④.

点评 考查了反函数的性质,符合函数求值,恒过定点问题和指数函数的性质.属于基础概念性试题,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.等差数列{an}前n项和为Sn,已知f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,且f(a2-2)=sin$\frac{2014π}{3}$,f(a2014-2)=cos$\frac{2015π}{6}$,则S2015=4030.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A、B为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右顶点,C(0,b),直线l:x=2a与x轴交于点D,与直线AC交于点P,且BP平分角∠DBC,则椭圆的离心率为$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.用符号语言表示下列语句.
(1)点A在平面α内,但在平面β外;
(2)直线α经过平面α外一点M;
(3)直线a在平面α内,又在平面β内,即平面α和β相交于直线a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线1的方程为x+(a-1)y+a2-1=0.
(1)若直线1不过第二象限,求实数a的取值范围;
(2)若直线1将圆x2+y2-2mx-4y=0平分,当m取得最大值时,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),椭圆E的右焦点到直线l:x-y+1=0的距离为$\sqrt{2}$.椭圆E的右顶点到右焦点与直线x=2的距离之比为$\frac{\sqrt{2}}{2}$.
(1)求椭圆E的标准方程;
(2)若直线l与椭圆E交于M,N两点,l与x轴,y轴分别交于C,D两点,记MN的中点为G,且C,D两点到直线OG的距离相等,当△OMN的面积最大时,求△OCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知a>1,函数f(x)=loga(x+1),g(x)=2loga(2x+t),当x∈(-1,1),t∈[4,6]时,存在g(x)≤f(x)+4成立,则a的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=$\frac{2-sinx}{3+cosx}$的最小值为$\frac{3+\sqrt{3}}{4}$,最大值为$\frac{3-\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线Γ:x2=2py(p>0),焦点为F,点P在抛物线Γ上,且P到F的距离比P到直线y=-2的距离小1.
(1)求抛物线Γ的方程;
(2)若点N为直线l:y=-5上的任意一点,过点N做抛物线Γ的切线NA与NB,切点分别为A,B,求证:直线AB恒过某一定点.

查看答案和解析>>

同步练习册答案