精英家教网 > 高中数学 > 题目详情
6.定义在R上的函数f(x)满足f(x+6)=f(x),当-3<x≤-1时,f(x)=-(x+2)2,当-1≤x≤3时,f(x)=x.则f(1)+f(2)+…+f(2015)的值为(  )
A.335B.340C.1680D.2015

分析 可得函数f(x)是R上周期为6的周期函数,计算f(1)+f(2)+f(3)+f(4)+f(5)+f(6)可得结论.

解答 解:∵定义在R上的函数f(x)满足f(x+6)=f(x),
∴函数f(x)是R上周期为6的周期函数,
∵当-3<x≤-1时,f(x)=-(x+2)2,当-1≤x≤3时,f(x)=x,
∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)
=f(1)+f(2)+f(3)+f(-2)+f(-1)+f(0)
=1+2+3+0-1+0=5,
∴f(1)+f(2)+…+f(2015)
=335×5+1+2+3+0-1=1680
故选:C.

点评 本题考查函数的周期性,涉及函数值的求解,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.直线x-y+6=0被圆(x+2)2+y2=16截得的弦长等于(  )
A.$2\sqrt{2}$B.$3\sqrt{2}$C.$4\sqrt{2}$D.$12\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC三个顶点是A(3,3),B(-3,1),C(2,0).
(1)求AB边中线CD所在直线方程;
(2)求AB边的垂直平分线的方程;
(3)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=x2-bx+c且f(1)=0,f(2)=-3
(1)求f(x)的函数解析式;
(2)求$f({\frac{1}{{\sqrt{x+1}}}})$的解析式及其定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.计算:$\frac{1}{2}lg16$+lg50-lg2的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=\frac{{{2^x}+b}}{{{2^x}+a}}$,且$f(1)=\frac{1}{3}$,f(0)=0
(1)求函数f(x)的解析式;
(2)求函数f(x)的值域;
(3)求证:方程f(x)=lnx至少有一根在区间(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,△OAB是边长为4的等边三角形,记△OAB位于直线x=t(t>0)左侧的图形的面积为f(t),试求函数f(t)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点P(sinθ-cosθ,sinθ+tanθ)在第一象限,则在[0,2π]内θ的取值范围是(  )
A.($\frac{π}{2}$,$\frac{3π}{4}$)∪(π,$\frac{5π}{4}$)B.($\frac{π}{4},\frac{π}{2}$)∪(π,$\frac{5π}{4}$)C.($\frac{π}{2}$,$\frac{3π}{4}$)∪($\frac{5π}{4},\frac{3π}{2}$)D.($\frac{π}{4},\frac{π}{2}$)∪($\frac{3π}{4},π$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若不等式组$\left\{\begin{array}{l}{x-y≥0}\\{2x+y≤2}\\{y≥0}\\{x+y≤a}\end{array}\right.$表示的平面区域是一个三角形,则a的取值范围是(  )
A.[$\frac{4}{3}$,+∞)B.(0,1]C.[1,$\frac{4}{3}$]D.(0,1]∪[$\frac{4}{3}$,+∞)

查看答案和解析>>

同步练习册答案