精英家教网 > 高中数学 > 题目详情
8.已知等比数列{an}的前n项和为Sn,若S4、S2、S3成等差数列,且a2+a3+a4=-18,若Sn≥2016,则n的取值范围为大于等于11的奇数.

分析 设等比数列{an}的公比为q≠1,由S4、S2、S3成等差数列,可得2S2=S4+S3,化为2a3+a4=0,又a2+a3+a4=-18,联立解得$\left\{\begin{array}{l}{q=-2}\\{{a}_{1}=3}\end{array}\right.$,由于Sn≥2016,化为-(-2)n≥2015,对n分类讨论即可得出.

解答 解:设等比数列{an}的公比为q≠1,∵S4、S2、S3成等差数列,∴2S2=S4+S3,∴2a3+a4=0,又a2+a3+a4=-18,
∴$\left\{\begin{array}{l}{{a}_{1}(2{q}^{2}+{q}^{3})=0}\\{{a}_{1}q(1+q+{q}^{2})=-18}\end{array}\right.$,解得$\left\{\begin{array}{l}{q=-2}\\{{a}_{1}=3}\end{array}\right.$,
∵Sn≥2016,∴$\frac{3[1-(-2)^{n}]}{1-(-2)}$≥2016,化为-(-2)n≥2015,
当n为偶数时,不成立,舍去.
当n为奇数时,化为2n≥2015,解得:n≥11.
∴n的取值范围为大于等于11的奇数.
故答案为:大于等于11的奇数.

点评 本题考查了等比数列的通项公式及其前n项和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=3cos2($\frac{π}{8}$x+$\frac{π}{5}$)-2,若对任意的x∈R都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.己知等差数列{an}中,a2=3,a4=7.
(1)求此数列的通项公式;
(2)求这个数列前7项的和S7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知锐角三角形ABC中,角A,B,C所对的边分别是a,b,c,且$tanB=\frac{{\sqrt{3}sinAsinC}}{{{{sin}^2}A+{{sin}^2}C-{{sin}^2}B}}$.
(Ⅰ)求角B的大小;
(Ⅱ)若$b=\sqrt{3}$,求a+c的最大值,并求此时的三角形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知c>0,设命题p:函数y=cx为减函数,命题q:当x∈[1,4]时函数$f(x)=x+\frac{4}{x}>\frac{1}{c}$恒成立,如果p且q为真命题,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数g(x)=Asin(ωx+φ)(其中A>0,|φ|<$\frac{π}{2}$,ω>0)的图象如图所示,函数f(x)=g(x)+$\frac{\sqrt{3}}{2}$cos2x-$\frac{3}{2}$sin2x
(1)如果${x_1},\;{x_2}∈(-\frac{π}{6},\frac{π}{3})$,且g(x1)=g(x2),求g(x1+x2)的值;
(2)当-$\frac{π}{6}$≤x≤$\frac{π}{3}$时,求函数f(x)的最大值、最小值及相应的x值;
(3)已知方程f(x)-k=0在$[0,\frac{π}{2}]$上只有一解,则k的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.图中是四棱台的侧面展开图的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在四面体OABC中,棱OA、OB、OC两两垂直,且OA=1,OB=2,OC=3,G为△ABC的重心,则$\overrightarrow{OG}$•($\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$)=$-\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(1-x)ex
(1)求f(x)的单调区间;
(2)若f(x1)=f(x2),探究x1+x2与0的大小关系,并用代数方法证明之.

查看答案和解析>>

同步练习册答案