【题目】如图,已知平面 平面, 与分别是棱长为1与2的正三角形, // ,四边形为直角梯形, // , ,点为的重心, 为中点, .
(Ⅰ)当时,求证: //平面;
(Ⅱ)若直线与所成角为,试求二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有N人参加,现将所有参加者按年龄情况分为[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55)等七组,其频率分布直方图如下所示.已知[35,40)这组的参加者是8人.
(1)求N和[30,35)这组的参加者人数N1;
(2)已知[30,35)和[35,40)这两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有1名数学老师的概率;
(3)组织者从[45,55)这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为x,求x的分布列和均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产一种机器的固定成本(即固定投入)为 0.5 万元,但每生产100台时,又需可变成本(即另增加投入)0.25 万元.市场对此商品的年需求量为 500台,销售的收入(单位:万元)函数为 R(x)=5x-x2(0≤x≤5),其中 x 是产品生产的数量(单位:百台).
(1)求利润关于产量的函数.
(2)年产量是多少时,企业所得的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC三边长构成公差为d(d≠0)的等差数列,则△ABC最大内角α的取值范围为( )
A. <α≤
B. <α<π
C. ≤α<π
D. <α≤
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是满足下列性质的所有函数组成的集合:对任何(其中为函数的定义域),均有成立.
(1)已知函数,,判断与集合的关系,并说明理由;
(2)是否存在实数,使得,属于集合?若存在,求的取值范围,若不存在,请说明理由;
(3)对于实数、 ,用表示集合中定义域为区间的函数的集合.
定义:已知是定义在上的函数,如果存在常数,对区间的任意划分:,和式恒成立,则称为上的“绝对差有界函数”,其中常数称为的“绝对差上界”,的最小值称为的“绝对差上确界”,符号;求证:集合中的函数是“绝对差有界函数”,并求的“绝对差上确界”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查每天微信用户使用微信的时间,某经销化妆品分微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜各1份,再从抽取的这5人中再随机抽取3人赠送200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列和数学期望.
参考公式:K2= ,其中n=a+b+c+d
参考数据:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.321 | 3.840 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形ABCD边长为2,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连结CF并延长交AB于点E.
(1)求证:AE=EB;
(2)求EFFC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,离心率为,过点的直线与椭圆相交于两点,且的周长为8.
(1)求椭圆的方程;
(2)若经过原点的直线与椭圆相交于两点,且,试判断是否为定值?若为定值,试求出该定值;否则,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com