精英家教网 > 高中数学 > 题目详情
设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为υ1,υ2,若它们的侧面积相等,且
S1
S2
=
16
9
,则
υ1
υ2
的值为
 
考点:棱柱、棱锥、棱台的体积,棱柱、棱锥、棱台的侧面积和表面积
专题:空间位置关系与距离
分析:设两个圆柱的底面半径分别为R,r,高分别为H,h,由
S1
S2
=
16
9
,得
R
r
=
4
3
,由它们的侧面积相等,得
H
h
=
3
4
,由此能求出
υ1
υ 2
解答: 解:设两个圆柱的底面半径分别为R,r,高分别为H,h,
S1
S2
=
16
9
,∴
R
r
=
4
3

∵它们的侧面积相等,∴
2πRH
2πrh
=1,
H
h
=
3
4
,∴
υ1
υ 2
=
πR2H
πr2h
=(
4
3
2×
3
4
=
4
3

故答案为:
4
3
点评:本题考查两个圆柱的体积的比值的求法,是中档题,解题时要注意圆柱的体积和侧面积计算公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A(0,1),B(-2,3)C(-1,2),D(1,5),则向量
AC
BD
方向上的投影为(  )
A、
2
13
13
B、-
2
13
13
C、
13
13
D、-
13
13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集上的函数fn(x)=xn,n∈N*
(1)记函数F(x)=bf1(x)-lnf3(x),x∈(0,e],若F(x)的最小值为6,求实数b的值;
(2)对于(1)中的b,设函数g(x)=(
b
3
x,A(x1,y1),B(x2,y2)(x1<x2)是函数g(x)图象上两点,若g'(x0)=
y2-y1
x2-x1
,试证明x0<x2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知点A(-1,0),B(1,0),C(0,a)(a∈R且a≠0),且动点D满足DA=
3
DB.
(1)求过A,B,C三点的⊙Q的方程;
(2)当△DAB面积取到最大值
3
时,
①若此时动点D又在⊙Q内(包含边界),求实数a的取值范围;
②设点G为△DAB的重心,过G作直线分别交边AB,AD于点M,N,求四边形MNDB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域关于原点对称,且满足①f(x1-x2)=
f(x1)f(x2)+1
f(x2)-f(x1)
;②存在正常实数a,使f(a)=1.求证:
(1)f(x)是奇函数;
(2)f(x)是周期函数,并且有一个周期为4a.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,将边长为2的正六边形ABDEF沿对角线BE翻折,连接AC、FD,形成如图所示的多面体,且AC=
6

(1)证明:平面ABEF⊥平面BCDE;
(2)求三棱锥E-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cosx-sin2x-cos2x+
7
4
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(α-β)=-
4
5
,cos(α+β)=
4
5
,α-β在第三象限,α+β在第四象限,求cos2α,cos2β.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)log2
1
3
+log23=
 

(2)lg2-lg
1
5
=
 

(3)lg25+2lg2-lg1=
 

查看答案和解析>>

同步练习册答案