精英家教网 > 高中数学 > 题目详情
已知离心率为
1
2
的椭圆C:
x2
a2
+
y2
b2
=1
过(1,
3
2

(1)求椭圆C的方程;
(2)是否存在实数m,使得在此椭圆C上存在不同两点关于直线y=4x+m对称,若存在请求出m,若不存在请说明理由.
分析:(1)由离心率为
1
2
的椭圆C:
x2
a2
+
y2
b2
=1
过(1,
3
2
),知
c
a
=
1
2
1
a2
+
9
4
b2
=1
a2=b2+c2
,由此能求出椭圆C的方程.
(2)假设存在实数m,使得在此椭圆C上存在不同两点关于直线y=4x+m对称.设A(x1,y1),B(x2,y2),AB的中点M(x0,y0),因为在此椭圆C上存在不同两点关于直线y=4x+m对称,所以kAB=
y2-y1
x2-x1
=-
1
4
,再用点差法进行求解.
解答:解:(1)∵离心率为
1
2
的椭圆C:
x2
a2
+
y2
b2
=1
过(1,
3
2
),
c
a
=
1
2
1
a2
+
9
4
b2
=1
a2=b2+c2
,解得a2=4,b2=3,c2=1,
∴椭圆C的方程为
x2
4
+
y2
3
=1

(2)假设存在实数m,使得在此椭圆C上存在不同两点关于直线y=4x+m对称.
设A(x1,y1),B(x2,y2),AB的中点M(x0,y0),
∵在此椭圆C上存在不同两点关于直线y=4x+m对称,
kAB=
y2-y1
x2-x1
=-
1
4

3x12+4y12=123x22+4y22=12
相减得3(x22-x12)+4(y22-y12)=0,即y1+y2=3(x1+x2),
∴y0=3x0,3x0=4x0+m,x0=-m,y0=-3m
而M(x0,y0)在椭圆内部,则
m2
4
+
9m2
3
<1
,即-
2
3
13
<m<
2
3
13

故存在实数m∈(-
2
3
13
2
3
13
),使得在此椭圆C上存在不同两点关于直线y=4x+m对称.
点评:本题考查椭圆方程的求法,考查满足条件的实数的取值范围的求法,综合性强,难度大,具有一定的探索性,对数学思维的要求较高.解题时要注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•怀化三模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(
3
3
2
)
,离心率e=
1
2
,若点M(x0,y0)在椭圆C上,则点N(
x0
a
y0
b
)
称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,椭圆的短轴端点与双曲线
y2
2
-x2
=1的焦点重合,过P(4,0)且不垂直于x轴直线l与椭圆C相交于A、B两点.
(Ⅰ)求椭C的方程;
(Ⅱ)求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源:怀化三模 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(
3
3
2
)
,离心率e=
1
2
,若点M(x0,y0)在椭圆C上,则点N(
x0
a
y0
b
)
称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年度新课标高三上学期数学单元测试9-理科-解析几何 题型:解答题

 (09广东19)(12分)

已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两个焦点分别为,椭

圆G上一点到的距离之和为12.圆:的圆心为点

   (1)求椭圆G的方程

   (2)求的面积

   (3)问是否存在圆包围椭圆G?请说明理由.

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案