精英家教网 > 高中数学 > 题目详情
19.已知点A(x1,y1),B(x2,y2)是抛物线y2=4x过焦点弦的两端点,且x1+x2=3,求|AB|的值.

分析 先根据抛物线方程求出p的值,再由抛物线的定义可得|AB|=x1+x2+p得到答案.

解答 解:∵抛物线y2=4x∴p=2,
根据抛物线的定义可得|AB|=x1+x2+p=3+2=5.
故答案为:5.

点评 本题主要考查抛物线的基本性质.属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若复数z满足$|{\begin{array}{l}1&i\\{1-2i}&z\end{array}}|=0$(i为虚数单位),则|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=sinx+cosx+sinxcosx,g(x)=mcos(2x-$\frac{π}{6}$)-2m+3(m>0),若对任意x1∈[0,$\frac{π}{4}$],存在x2∈[0,$\frac{π}{4}$],使得g(x1)=f(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A(x1,y1),B(x2,y2)(x1>x2)是函数f(x)=ln|x|图象上的两个不同点,且在A,B两点处的切线互相垂直,则x1-x2的取值范围为(  )
A.(0,+∞)B.(0,2)C.[1,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设a>0且a≠1,函数f(x)=a${\;}^{{x}^{2}-2x}$有最大值,则不等式loga(x-2)>0的解集是(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在R上的偶函数f(x)满足f(x)-f(x+2)=0,且当x∈[0,2]时,f(x)=2sin$\frac{π}{2}$x,记sgn(x)=$\left\{\begin{array}{l}{x,x>0}\\{0,x=0}\\{-x,x<0}\end{array}\right.$,则函数y=f(x)-sgn(log2(sgn(x)))的零点个数为(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,a=5,b=4,C=60°,则$\overrightarrow{CB}$•$\overrightarrow{CA}$的值为(  )
A.-10B.10C.-10$\sqrt{3}$D.10$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆的方程x2+y2-6x-2y-15=0.
(1)求直线x+2y=0截圆所得的弦长;
(2)求以原点为中点的弦所在直线方程;
(3)若点P(x,y)满足圆方程,求$\frac{y-10}{x-8}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,A、B、C的对边分别为a,b,c,已知A≠$\frac{π}{2}$,且3sinAcosB+$\frac{1}{2}$bsin2A=3sinC.
(I)求a的值;
(Ⅱ)若A=$\frac{2π}{3}$,求△ABC周长的最大值.

查看答案和解析>>

同步练习册答案