精英家教网 > 高中数学 > 题目详情

【题目】下列说法中错误的是( )

A. 从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样方法是分层抽样

B. 线性回归直线一定过样本中心点

C. 若两个随机变量的线性相关性越强,则相关系数的值越接近于1

D. 若一组数据1、、2、3的众数是2,则这组数据的中位数是2

【答案】C

【解析】

利用每一个选项涉及的知识对每一个选项逐一分析得解.

对于选项A,由于样本的个体差异比较大,层次比较多,所以应采用的最佳抽样方法是分层抽样,所以该选项是正确的;

对于选项B, 线性回归直线一定过样本中心点,所以该选项是正确的;

对于选项C, 两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1,所以该选项是错误的;

对于选项D, 若一组数据1、、2、3的众数是2,则这组数据的中位数是2,所以该选项是正确的.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在上的单调函数,且对任意的x∈都有,则方程的一个根所在的区间是( )

A. (0,1) B. (1,2) C. (2,3) D. (3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生从全校学生中随机选取名统计他们的鞋码大小,得到如下数据:

鞋码

合计

男生

女生

以各性别各鞋码出现的频率为概率.

)从该校随机挑选一名学生,求他(她)的鞋码为奇数的概率.

)为了解该校学生考试作弊的情况,从该校随机挑选名学生进行抽样调查.每位学生从装有除颜色外无差别的个红球和个白球的口袋中,随机摸出两个球,若同色,则如实回答其鞋码是否为奇数;若不同色,则如实回答是否曾在考试中作弊.这里的回答,是指在纸上写下.若调查人员回收到的小纸条,试估计该校学生在考试中曾有作弊行为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,且离心率为,圆

(1)求椭圆C的方程,

(2)P在圆D上,F为椭圆右焦点,线段PF与椭圆C相交于Q,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为椭圆的左顶点,过的直线交抛物线两点,的中点.

1)求证:点的横坐标是定值,并求出该定值;

2)若直线点,且倾斜角和直线的倾斜角互补,交椭圆于两点,求的值,使得的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,在亚洲热带地区广泛栽培.槟榔是重要的中药材,在南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解两个少数民族班学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周咀嚼槟榔的颗数作为样本绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).

(1)你能否估计哪个班级学生平均每周咀嚼槟榔的颗数较多?

(2)从班的样本数据中随机抽取一个不超过19的数据记为,从班的样本数据中随机抽取一个不超过21的数据记为,求的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】唐代诗人李欣的是古从军行开头两句说百日登山望烽火,黄昏饮马傍交河诗中隐含着一个有缺的数学故事将军饮马的问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为,若将军从出发,河岸线所在直线方程,并假定将军只要到达军营所在区域即回到军营,则将军饮马的最短总路程为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是每个大于的偶数可以表示为两个素数的和,如.现从不超过的素数中,随机选取两个不同的数(两个数无序).(注:不超过的素数有

1)列举出满足条件的所有基本事件;

2)求选取的两个数之和等于事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点是底面的中心,是线段的上一点。

(1)若的中点,求直线与平面所成角的正弦值;

(2)能否存在点使得平面平面,若能,请指出点的位置关系,并加以证明;若不能,请说明理由。

查看答案和解析>>

同步练习册答案