精英家教网 > 高中数学 > 题目详情

【题目】,函数.

(1)若,求曲线在点处的切线方程;

(2)若无零点,求a的取值范围;

(3)若有两个相异零点,求证:.

【答案】(1) (2) (3)见证明

【解析】

1)先求导数,根据导数几何意义得切线斜率,再根据点斜式得结果,(2)先求导数,再根据导函数零点讨论函数单调性,根据单调性确定函数最大值,最后根据最大值小于零得结果.3)根据零点解得,化简欲证不等式,再令,构造关于t的函数,利用导数证不等式.

解:(1)当时,,所以.

则切线方程为,即

(2)①当时,有唯一零点

②当时,则是区间上的增函数,

因为

所以,即函数在区间有唯一零点;

③当时,令

所以,当时,,函数在区间上是增函数;

时,,函数是在上是减函数,

所以在区间上,函数的极大值为

,即,解得

故所求实数的取值范围是.

(3)设,由,可得. 所以

要证,只需证,

即证,即.

,于是

设函数,求导得

所以函数上的增函数,

所以,即不等式成立,

故所证不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若内单调递减,求实数的取值范围;

(Ⅱ)若函数有两个极值点分别为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点F为椭圆C(ab0)的左焦点,点AB分别为椭圆C的右顶点和上顶点,点P()在椭圆C上,且满足OPAB

1)求椭圆C的方程;

2)若过点F的直线l交椭圆CDE两点(点D位于x轴上方),直线ADAE的斜率分别为,且满足=﹣2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且过焦点的最短弦长为3.

1)求椭圆的标准方程;

2)设分别是椭圆的左、右焦点,过点的直线与曲线交于不同的两点,求的内切圆半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),以直角坐标系的原点为极点,轴正半轴为极轴建立极坐标系.

(1)求圆的极坐标方程;

(2)设曲线的极坐标方程为,曲线的极坐标方程为,求三条曲线所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个不透明的箱子中装有大小形状相同的5个小球,其中2个白球标号分别为3个红球标号分别为,现从箱子中随机地一次取出两个球.

(1)求取出的两个球都是白球的概率;

(2)求取出的两个球至少有一个是白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)当时,判断曲线与曲线的位置关系;

(2)当曲线上有且只有一点到曲线的距离等于时,求曲线上到曲线距离为的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在区间上任取一个数记为a,在区间上任取一个数记为b

a,求直线的斜率为的概率;

a,求直线的斜率为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数,函数在区间上的最大值是2,则______

查看答案和解析>>

同步练习册答案