精英家教网 > 高中数学 > 题目详情
16.已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前10项和等于(  )
A.1024B.1023C.512D.511

分析 利用等比数列的性质,求出数列的首项以及公比,即可求解数列{an}的前10项和.

解答 解:数列{an}是递增的等比数列,a1+a4=9,a2a3=8,
可得a1a4=8,解得a1=1,a4=8,
∴8=1×q3,q=2,
∴数列{an}的前10项和为:$\frac{1-{2}^{10}}{1-2}$=1023.
故选:B.

点评 本题考查等比数列的性质,数列{an}的前10项和求法,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知F1、F2为椭圆C:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1(a>b>0)的左、右两个焦点,斜率不为0的直线l过左焦点F1 且交椭圆C于A(x1,y1),B(x2,y2)两点,
(1)求|F1F2|的长度.
(2)求证:S${\;}_{△AB{F}_{2}}$=2|y1-y2|
(3)求△ABF2面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.圆柱被一个平面截去一部分与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若半球的半径r=2,则该几何体的表面积为16+20π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({{a^1}>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,其右焦点到直线x-y+$\sqrt{3}$=0的距离为$\sqrt{6}$.
(I)求椭圆C的标准方程;
(Ⅱ)直线y=kx(k≠0)交椭圆C于M,N两点,椭圆右顶点为A,求证:直线AM,AN的斜率乘积为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知cos(x+$\frac{π}{6}$)=$\frac{1}{4}$,求sin($\frac{2π}{3}$+x)+sin2(x-$\frac{7π}{3}$)-cos(x-$\frac{5π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在{an}为等比数列,a1=12,a2=24,则a3=(  )
A.36B.48C.60D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点P在椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上,F1、F2为椭圆的两焦点,已知|PF1|=2,则|PF2|的值是(  )
A.1B.8C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若方程x2+ax+b=0的一个根在(0,1)内,另一个根在(1,2)内,则$\frac{b-2}{a-1}$的取值范围(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\overrightarrow{AB}$=(5,-3),点A(3,1),则点B的坐标为(  )
A.(2,2)B.(-2,-2)C.(8,-2)D.(4,8)

查看答案和解析>>

同步练习册答案