精英家教网 > 高中数学 > 题目详情

【题目】已知圆C1:(x+1)2+y2=25,圆C2:(x﹣1)2+y2=1,动圆C与圆C1和圆C2均内切.

(1)求动圆圆心C的轨迹E的方程;
(2)点P(1,t)为轨迹E上点,且点P为第一象限点,过点P作两条直线与轨迹E交于A,B两点,直线PA,PB斜率互为相反数,则直线AB斜率是否为定值,若是,求出定值;若不是,请说明理由.

【答案】
(1)解:圆C1:(x+1)2+y2=25的圆心C1(﹣1,0),半径r1=5;圆C2:(x﹣1)2+y2=1的圆心C2(1,0),半径r2=1.

设动圆C的圆心C(x,y),半径r.

∵动圆C与圆C1,圆C2均内切,

∴|C1C|=5﹣r,|C2C|=r﹣1.

∴|C1C|+|C2C|=5﹣1=4>|C1C2|=2,

因此动点C的轨迹是椭圆,且2a=4,2c=2,得a=2,c=1,

∴b2=a2﹣c2=3.

因此动圆圆心C的轨迹E方程是


(2)解:如图,

∵点P(1,t)为轨迹E上点,且点P为第一象限点,

,解得t=

∴P(1, ),

设PA所在直线方程为y﹣ ,则PB所在直线方程为

联立 ,得(3+4k2)x2﹣(8k2﹣12k)x+4k2﹣12k﹣3=0,

取k为﹣k,可得

∴直线AB斜率为定值


【解析】(1)圆(x+1)2+y2=1的圆心C1(﹣1,0),半径r1=1;圆(x﹣1)2+y2=25的圆心C2(1,0),半径r2=5.设动圆C的圆心C(x,y),半径r.由于动圆C与圆(x+1)2+y2=1及圆(x﹣1)2+y2=25都内切,可得|C1C|=r﹣1,|C2C|=5﹣r.于是|C1C|+|C2C|=5﹣1=4>|C1C2|=2,利用椭圆的定义可知:动点C的轨迹是椭圆;(2)把P的坐标代入椭圆方程,求得t值,然后设出过PA的直线方程,PB的直线方程,联立直线方程和椭圆方程,求得A,B的坐标,代入斜率公式可得直线AB斜率为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3+ax2+bx+c满足f'(0)=4,f'(-2)=0。

(1)求a,b的值及曲线y=f(x)在点(0,f(0))处的切线方程;

(2)若函数f(x)有三个不同的零点,求c的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体中,点是棱上的一个动点,平面交棱于点给出下列命题:

①存在点,使得//平面

对于任意的点平面平面

存在点,使得平面

④对于任意的点,四棱锥的体积均不变.

其中正确命题的序号是______.(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定长为2的线段AB的两个端点在以点0 为焦点的抛物线x2=2py上移动,记线段AB的中点为M,求点Mx轴的最短距离,并求此时点M的坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的单调递减的奇函数,当时,.

(1)求的值;

(2)求的解析式;

(3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】常州地铁项目正在紧张建设中,通车后将给市民出行带来便利.已知某条线路通车后,地铁的发车时间间隔 (单位:分钟)满足经测算,地铁载客量与发车时间间隔相关,当时地铁为满载状态,载客量为1200人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为2分钟时的载客量为560人,记地铁载客量为.

⑴ 求的表达式,并求当发车时间间隔为6分钟时,地铁的载客量;

⑵ 若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若是两个相交平面,则在下列命题中,真命题的序号为 .(写出所有真命题的序号)

若直线,则在平面内,一定不存在与直线平行的直线.

若直线,则在平面内,一定存在无数条直线与直线垂直.

若直线,则在平面内,不一定存在与直线垂直的直线.

若直线,则在平面内,一定存在与直线垂直的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是关于的偶函数.

(1)求的值;

(2)求证: 对任意实数,函数的图象与函数的图象最多只有一个交点.

查看答案和解析>>

同步练习册答案