精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与ABA1所成二面角的正弦值.

【答案】
(1)解:以{ }为单位正交基底建立空间直角坐标系A﹣xyz,

则由题意知A(0,0,0),B(2,0,0),C(0,2,0),

A1(0,0,4),D(1,1,0),C1(0,2,4),

=(1,﹣1,﹣4),

∴cos< >= = =

∴异面直线A1B与C1D所成角的余弦值为


(2)解: 是平面ABA1的一个法向量,

设平面ADC1的法向量为

,取z=1,得y=﹣2,x=2,

∴平面ADC1的法向量为

设平面ADC1与ABA1所成二面角为θ,

∴cosθ=|cos< >|=| |=

∴sinθ= =

∴平面ADC1与ABA1所成二面角的正弦值为


【解析】(1)以{ }为单位正交基底建立空间直角坐标系A﹣xyz,利用向量法能求出异面直线A1B与C1D所成角的余弦值.(2)分别求出平面ABA1的法向量和平面ADC1的法向量,利用向量法能求出平面ADC1与ABA1所成二面角的余弦值,再由三角函数知识能求出平面ADC1与ABA1所成二面角的正弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】根据下列条件,求圆的方程
(1)求经过两点 ,且圆心在y轴上的圆的方程;
(2)圆的的半径为1,圆心与点(1,0)关于 对称的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线方程为x2=2py(p>0),其焦点为F,点O为坐标原点,过焦点F作斜率为k(k≠0)的直线与抛物线交于A,B两点,过A,B两点分别作抛物线的两条切线,设两条切线交于点M.
(1)求
(2)设直线MF与抛物线交于C,D两点,且四边形ACBD的面积为 ,求直线AB的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABCD为正方形,P为平面ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC,平面PAB与平面PAD的位置关系是(
A.平面PAB与平面PAD,PBC垂直
B.它们都分别相交且互相垂直
C.平面PAB与平面PAD垂直,与平面PBC相交但不垂直
D.平面PAB与平面PBC垂直,与平面PAD相交但不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四棱锥P﹣ABCD中,PA= AB,M是BC的中点,G是△PAD的重心,则在平面PAD中经过G点且与直线PM垂直的直线有条.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如如图,SD垂直于正方形ABCD所在的平面,
(1)求证:BC⊥SC;
(2)设棱SA的中点为M,求异面直线DM与SC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的离心率为 为椭圆的右焦点, .

(Ⅰ)求椭圆的方程;

(Ⅱ)设为原点, 为椭圆上一点, 的中点为,直线与直线交于点,过,交直线于点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若P两条异面直线l,m外的任意一点,则(
A.过点P有且仅有一条直线与l,m都平行
B.过点P有且仅有一条直线与l,m都垂直
C.过点P有且仅有一条直线与l,m都相交
D.过点P有且仅有一条直线与l,m都异面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 )的离心率为,其左焦点到点的距离为

1)求椭圆的标准方程;

2)若直线 与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案