精英家教网 > 高中数学 > 题目详情

(本题满分14分)从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(Ⅰ)若抽取后又放回,抽取3次,求恰好抽到2次为红球的概率;
(Ⅱ)若抽取后不放回,设抽完红球所需的次数为,求的分布列及期望.

解: (Ⅰ)抽取一次抽到红球的概率为--------------------------------2分
所以抽取3次恰好抽到2次为红球的概率为-----------4分
(Ⅱ)-----------------------------------------------------1分
,,,
.----------------------------------------------4分


2
3
4
5
P




的分布列为                                                      
数学期望.--------------------------3分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某中学在高三开设了4门选修课,每个学生必须且只需选修1门选修课。对于该年级的甲、乙、丙3名学生,回答下面的问题:
(1)求这3名学生选择的选修课互不相同的概率;
(2)某一选修课被这3名学生选修的人数的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两名篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球2次均未命中的概率为
(1)求乙投球的命中率
(2)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

教室内有5个学生,分别佩戴1号到5号的校徽,任选3人记录他们的校徽号码。
(1)求最小号码为2的概率;(2)求三个号码中至多有一个偶数的概率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为,且各轮问题能否正确回答互不影响.
(1)求该选手进入第四轮才被淘汰的概率;
(2)求该选手至多进入第三轮考核的概率. (注:本小题结果可用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)将一颗骰子(它的六个面分别标有点数1,2,3,4,5,6)先后抛掷两次,观察向上的点数,求:两数之积是6的倍数的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰。已知某选手能正确回答第一、二、三、四轮问题的概率分别为,且各轮问题能否正确回答互不影响。
(Ⅰ)求该选手进入第三轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q>80时,为醉酒驾车.济南市公安局交通管理部门于2011年2月的某天晚上8点至11点在市区设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q≥140的人数计入120≤Q<140人数之内).

(1) 求此次拦查中醉酒驾车的人数;
(2) 从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,
再从抽取的8人中任取3人,求3人中含有醉酒驾车人数x的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

执行如图所示的程序框图,输出的S值为(  )

A.2 B.4 C.8D.16

查看答案和解析>>

同步练习册答案