精英家教网 > 高中数学 > 题目详情

已知等比数列{an}中,a2,a3,a4分别是某等差数列的第5项、第3项、第2项,且a1=64,公比q≠1.
(Ⅰ)求an
(Ⅱ)设bn=log2an,求数列{bn}的前n项和Tn

解:(Ⅰ)设该等差数列为cn,则a2=c5,a3=c3,a4=c2
∴(a2-a3)=2(a3-a4
即:a1q-a1q2=2a1q2-2a1q3


(Ⅱ),故b1=6,d=1

分析:(Ⅰ)由题设条件等比数列{an}中,a2,a3,a4分别是某等差数列的第5项、第3项、第2项利用等差数列的性质建立方程,即可求出公比q
(Ⅱ)设bn=log2an,知数列{bn}是一个等差数列,其首项与公差易求,利用公式求和即可.
点评:本题考查等差数列与等比数列的综合,考查了用利用等差数列的性质建立方程求参数以及利用等差数列的求和公式求和,考查灵活转化的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案