精英家教网 > 高中数学 > 题目详情
5.设计一个算法,判断一个正的n(n>2)位数是不是回文数,用自然语言描述算法的步骤.

分析 回文数是指从右到左读与从左到右读都是一样的正整数,如121,676,94249等,利用循环结构依次判断x的第i位与第(n+1-i)位上的数字是不是相等即可.

解答 解:算法步骤如下:
第一步:输入一个正整数x和它的位数.
第二步:判断n是不是偶数,如果是偶数,令m=$\frac{n}{2}$;如果是奇数,令m=$\frac{n-1}{2}$.
第三步:当i从1取到m值时,依次判断x的第i位与第(n+1-i)位上的数字是不是相等,如果都相等,则x是回文数,输出“是回文数“,;否则,x不是回文数,输出“不是回文数“.结束.

点评 本题考察设计算法解决实际问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}各项均为正数,且满足a1=1,an+1=2an+1(n∈N*).
(1)求数列{an}的通项公式an
(2)若点Pn(an,yn)(n∈N*)是曲线f(x)=$\frac{lo{g}_{2}(x+1)}{x+1}$(x>0)上的列点,且点Pn(an,yn)在x轴上的射影为Qn(an,0)(n∈N*),设四边形PnQnQn+1Pn+1的面积是Sn,求证:n∈N*时,$\frac{1}{{S}_{1}}$+$\frac{1}{2{S}_{2}}$+$\frac{1}{3{S}_{n}}$+…+$\frac{1}{n{S}_{n}}$<$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.三个数学爱好者各自出题给对方做.
甲出的题目是:(1)证明不等式$\frac{x}{1+x}$<ln(1+x)<x,x>0;
乙出的题目是:(2)在数列{an}中,已知a1=$\frac{1}{2}$,且$\frac{{a}_{n}{a}_{n-1}}{{a}_{n-1}-{a}_{n}}$=1+$\frac{1}{n^2-n-1}$,求数列{an}的通项公式an
丙看完后出的题目是:在(2)中,设数列{an}的前n项和为Sn,证明:-1+lnn<Sn≤$\frac{1}{2}$+lnn.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知O是坐标原点,F是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的一个焦点,过F且与x轴垂直的直线与椭圆交于M,N两点,则cos∠MON的值为(  )
A.$\frac{5}{13}$B.-$\frac{5}{13}$C.$\frac{2\sqrt{13}}{13}$D.-$\frac{2\sqrt{13}}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若P(x,y)点满足$\frac{{x}^{2}}{4}$+y2=1(y≥0)则$\frac{y-3}{x-4}$的范围是$[\frac{3-\sqrt{3}}{3},\frac{3}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=log2(2x-3)+3.
(1)求f(x)的定义域;
(2)求函数y=f(x),x∈[4,7]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.295是等差数列-5,-2,1,…的第(  )项.
A.99B.100C.101D.102

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知F1、F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,椭圆上一点M满足△MF1F2的周长为4+2$\sqrt{3}$,过椭圆上顶点与右顶点的直线与直线4x-2y+5=0垂直.
(1)求椭圆C的方程;
(2)若直线l交椭圆C于A,B两点,以AB为直径的圆过原点,求弦长|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.直线l过直线2x+y+8=0和直线x+y+3=0的交点,且垂直于直线4x+14y-1=0,求直线l的方程.

查看答案和解析>>

同步练习册答案