精英家教网 > 高中数学 > 题目详情

【题目】如图,在棱长为1的正方体中,动点在线段上运动,且有.

(1)若,求证:

(2)若二面角的平面角的余弦值为,求实数的值.

【答案】(1)见证明;(2)

【解析】

1)当时,重合,连接,可得,再由正方体特征可证得,即可证得平面,问题得证。

2)以为坐标原点,分别为轴建立空间直角坐标系.分别求出平面的一个法向量及平面的一个法向量,利用向量夹角的坐标表示列方程即可求得,问题得解。

(1)当时,重合,连接

则在正方形中,.

又在正方体中底面,而平面,所以.

,所以平面

平面,所以,也即.

(2)依题意,以为坐标原点,分别为轴建立如图所示的空间直角坐标系.

.

.

设平面的一个法向量

,即

.

设平面的一个法向量

,即

.

所以

解得.

因为,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:x2+mx+1=0有两个不等的负根;命题q:4x2+4(m﹣2)x+1=0无实根.若命题p与命题q有且只有一个为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为椭圆的左顶点,过的直线交抛物线两点,的中点.

1)求证:点的横坐标是定值,并求出该定值;

2)若直线点,且倾斜角和直线的倾斜角互补,交椭圆于两点,求的值,使得的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】唐代诗人李欣的是古从军行开头两句说百日登山望烽火,黄昏饮马傍交河诗中隐含着一个有缺的数学故事将军饮马的问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为,若将军从出发,河岸线所在直线方程,并假定将军只要到达军营所在区域即回到军营,则将军饮马的最短总路程为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三家企业产品的成本分别为100001200015000,其成本构成如下图所示,则关于这三家企业下列说法错误的是(

A.成本最大的企业是丙企业B.费用支出最高的企业是丙企业

C.支付工资最少的企业是乙企业D.材料成本最高的企业是丙企业

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是每个大于的偶数可以表示为两个素数的和,如.现从不超过的素数中,随机选取两个不同的数(两个数无序).(注:不超过的素数有

1)列举出满足条件的所有基本事件;

2)求选取的两个数之和等于事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个三角形数表按如下方式构成(如图:其中项数):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:为数表中第行的第个数.

……

(1)求第2行和第3行的通项公式

(2)证明:数表中除最后2行外每一行的数都依次成等差数列,并求关于的表达式;

(3)若,试求一个等比数列,使得,且对于任意的,均存在实数,当时,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校需要从甲、乙两名学生中选一人参加数学竞赛,抽取了近期两人次数学考试的成绩,统计结果如下表:

第一次

第二次

第三次

第四次

第五次

甲的成绩(分)

乙的成绩(分)

(1)若从甲、乙两人中选出一人参加数学竞赛,你认为选谁合适?请说明理由.

(2)若数学竞赛分初赛和复赛,在初赛中有两种答题方案:

方案一:每人从道备选题中任意抽出道,若答对,则可参加复赛,否则被淘汰.

方案二:每人从道备选题中任意抽出道,若至少答对其中道,则可参加复赛,否则被润汰.

已知学生甲、乙都只会道备选题中的道,那么你推荐的选手选择哪种答题方条进人复赛的可能性更大?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 部分图象如图所示.

(1)求的最小正周期及解析式;

(2)设,求函数在区间上的最大值和最小值.

查看答案和解析>>

同步练习册答案