精英家教网 > 高中数学 > 题目详情
若在x∈[0,
π
2
]内有两个不同的实数值满足等式cos2x+
3
sin2x=k+1,则k的取值范围是(  )
分析:把已知等式左边提取2后,利用特殊角的三角函数值及两角和与差的正弦函数公式化为一个角的正弦函数,由x的范围求出这个角的范围,画出此时正弦函数的图象,根据函数值y对应的x有两个不同的值,由图象得出满足题意的正弦函数的值域,列出关于k的不等式,求出不等式的解集即可得到k的取值范围.
解答:解:cos2x+
3
sin2x=k+1,
得2(
1
2
cos2x+
3
2
sin2x)=k+1,即2sin(2x+
π
6
)=k+1,
可得:sin(2x+
π
6
)=
k+1
2

由0≤x≤
π
2
,得
π
6
≤2x+
π
6
6

∵y=sin(2x+
π
6
)在x∈[0,
π
2
]上的图象形状如图,

∴当
1
2
k+1
2
<1时,方程有两个不同的根,
解得:0≤k<1.
答案:D
点评:此题考查了两角和与差的正弦函数公式,正弦函数的图象与性质,以及正弦函数的定义域与值域,利用了数形结合的思想,解题的思路为:利用三角函数的恒等变形把已知等式的左边化为一个正弦函数,利用正弦函数的图象与性质来解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

二次函数f(x)的图象顶点为A(1,16),且图象在x轴上截得线段长为8.
(1)求函数f(x)的解析式;
(2)令g(x)=(2-2a)x-f(x);
①若函数g(x)在x∈[0,2]上是单调增函数,求实数a的取值范围;
②求函数g(x)在x∈[0,2]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州二模)已知向量
a
=(2cosωx,-1),
b
=(
3
sinωx+cosωx,1)(ω>0),函数f(x)=
a
b
的最小正周期为π.
(I)求函数f(x)的表达式及最大值;
(Ⅱ)若在x∈[0,
π
2
]
上f(x)≥a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=sin(x+),若在x∈[0,2π]上关于x的方程f(x)=m有两个不等的实数根x1、x2,则x1+x2为__________.

查看答案和解析>>

科目:高中数学 来源:德州二模 题型:解答题

已知向量
a
=(2cosωx,-1),
b
=(
3
sinωx+cosωx,1)(ω>0),函数f(x)=
a
b
的最小正周期为π.
(I)求函数f(x)的表达式及最大值;
(Ⅱ)若在x∈[0,
π
2
]
上f(x)≥a恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案