精英家教网 > 高中数学 > 题目详情

【题目】设点M(x,y)在|x|≤1,|y|≤1时按均匀分布出现,试求满足:
(1)x+y≥0的概率;
(2)x+y<1的概率;
(3)x2+y2≥1的概率.

【答案】
(1)

解:如图,

满足|x|≤1,|y|≤1的点组成一个边长为2的正方形ABCD,则S正方形ABCD=4;

x+y=0的图象是AC所在直线,满足x+y≥0的点在AC的右上方,

即在△ACD内(含边界),

而SACD= S正方形ABCD=2,

所以P(x+y≥0)= =


(2)

解:在|x|≤1,|y|≤1且x+y<1的面积为4﹣ =

所以P(x+y<1)=


(3)

解:在|x|≤1,|y|≤1且x2+y2≥1的面积为4﹣π,

所以P(x2+y2≥1)=1﹣


【解析】满足|x|≤1,|y|≤1的点组成一个边长为2的正方形ABCD,分别求出相应的面积,即可求出相应概率.
【考点精析】解答此题的关键在于理解几何概型的相关知识,掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,M、N分别是棱AA1、AD的中点,设E是棱AB的中点.

(1)求证:MN∥平面CEC1
(2)求平面D1EC1与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】证明.
(1)用数学归纳法证明:12+22+32+…+n2= ,n是正整数;
(2)用数学归纳法证明不等式:1+ + +…+ <2 (n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
(1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(2)根据表中数据,在调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.

年级名次
是否近视

1~50

951~1000

近视

41

32

不近视

9

18

附:P(K2≥3.841=0.05)K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将参加数学竞赛的1000名学生编号如下:0001,0002,003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法把编号分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0013,那么抽取的第40个号码

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若恒成立,试确定实数的取值范围;

(3)证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为直角梯形, ,且 的中点。

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)当a=0时,求f(x)的极值.
(2)当a≠0时,若f(x)是减函数,求a的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ax2+4x﹣lnx.
(1)当a=﹣3时,求f(x)的单调区间;
(2)当a≠0时,若f(x)是减函数,求a的取值范围.

查看答案和解析>>

同步练习册答案