精英家教网 > 高中数学 > 题目详情

已知数列的前项和为,常数,且对一切正整数都成立。
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求证: <4

(1)若时,,若,则
(2)时,,设,结合错位相减法来得到比较。

解析试题分析:(Ⅰ)取n=1得
当n》2时,
,所以n》2时,由相减得
,所以数列是等比数列,于是

综上可知:若时,,若,则
(Ⅱ)时,,设

所以,2<4
考点:数列的通项公式与前n项和的关系
点评:主要是考查了数列的通项公式求解和错位相减法求和的综合运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等差数列和公比为的等比数列满足:
(1)求数列的通项公式;
(2)求数列的前项和为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和是二项式展开式中含奇次幂的系数和.
(1)求数列的通项公式;
(2)设,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,且
(1)求数列的通项公式;
(2)令,数列的前项和为,若不等式 对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列,其前项和,数列 满足
( 1 )求数列的通项公式;
( 2 )设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若,求数列{Cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)的图象经过点(1,λ),且对任意x∈R,
都有f(x+1)=f(x)+2.数列{an}满足
(1)当x为正整数时,求f(n)的表达式;(2)设λ=3,求a1+a2+a3+…+a2n
(3)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的相邻两项是关于的方程的两根,且.
(Ⅰ)求证:数列是等比数列;
(Ⅱ)求数列的前项和
(Ⅲ)设函数对任意的都成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知数列的前n项和为,满足
(1)求数列的通项公式
(2)设,求数列的前n项和

查看答案和解析>>

同步练习册答案