精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论函数的零点个数;

2)若为给定的常数,且),记在区间上的最小值为,求证:.

【答案】1)①当时,无零点;②当时,有一个零点;③当时,有两个零点;(2)证明见解析.

【解析】

1)根据解析式求得导函数,并令求得极值点.在极值点两侧,判断导函数的符号,并求得最小值.结合当时函数值特征,即可确定零点个数.

2)根据,可得.进而确定的表达式,代入不等式化简变形,并令,构造函数,求得后由导函数符号判断的单调性及最值,即可证明不等式成立.

1)函数

,解得

时,,所以为单调递减;

时,,所以为单调递增;

所以

①当,即时,无零点;

②当,即时,有一个零点;

③当,即时,有两个零点;

2)证明:因为

所以

由(1)可知在区间上的最小值

所以不等式可化为

移项化简可得

所以

,则.

所以原不等式可化为

.

所以单调递减,

成立,

原不等式得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,ABCD为矩形,点AEBF共面,均为等腰直角三角形,且若平面⊥平面

)证明:平面平面ADF

)问在线段EC上是否存在一点G,使得BG∥平面若存在,求出此时三棱锥GABE与三棱锥的体积之比,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△的内角的对边分别为,若__________,求△的周长和面积.

在①,②,③这三个条件中,任选一个补充在上面问题中的横线处,并加以解答.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面内,已知,过直线分别作平面,使锐二面角,锐二面角,则平面与平面所成的锐二面角的余弦值为( .

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)判断曲线在点处的切线与曲线的公共点个数;

(II)若函数有且仅有一个零点,求的值;

(III)若函数有两个极值点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的两个顶点坐标是的周长为是坐标原点,点满足.

1)求点的轨迹的方程;

2)若互相平行的两条直线分别过定点,且直线与曲线交于两点,直线与曲线交于两点,若四边形的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,是以为斜边的等腰直角三角形,分别是的中点,

(Ⅰ)求证:平面

(Ⅱ)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程,点在直线上,直线与曲线交于两点.

1)求曲线的普通方程及直线的参数方程;

2)求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《易·系辞上》有河出图,洛出书之说.河图、洛书是中国古代流传下来的两幅神秘图案,蕴含了深奥的宇宙星象之理,被誉为宇宙魔方,是中华文化,阴阳术数之源.其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为1的概率为(

A.B.C.D.

查看答案和解析>>

同步练习册答案