精英家教网 > 高中数学 > 题目详情

【题目】如图,中心为坐标原点O的两圆半径分别为,射线OT与两圆分别交于AB两点,分别过AB作垂直于x轴、y轴的直线于点P

1)当射线OT绕点O旋转时,求P点的轨迹E的方程;

2)直线l与曲线E交于MN两点,两圆上共有6个点到直线l的距离为时,求的取值范围.

【答案】(1);(2).

【解析】

(1),OTx轴正方向夹角为,写出轨迹的参数方程,再化简成直角坐标方程即可.

(2)根据两圆上共有6个点到直线l的距离为,利用圆的位置关系转换为原点O至直线l的距离,进而求得的取值范围,再联立直线与椭圆表达出,利用的取值范围求解的取值范围即可.

,OTx轴正方向夹角为,则

化简得,即P点的轨迹E的方程为

2)当两圆上有6个点到直线1的距离为时,原点O至直线l的距离,

,解得

联立方程

,,则,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点AB且直线PAy轴于M直线PBy轴于N

求直线l的斜率的取值范围

O为原点求证为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是边长为3的正方形,平面,且.

(1)求几何体的体积;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)=1nx2x+1,其中a≠0

1)当a1时,求fx)的极值;

2)当a0时,证明:fx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求的直角坐标方程;

2)若有且仅有三个公共点,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=exax1aR

1)当a2时,求函数fx)的单调性;

2)设a≤0,求证:x≥0时,fxx2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知内角ABC所对的边分别为abc,向量m=(2sin B,- ),n,且mn.

(1)求锐角B的大小;

(2)如果b=2,求△ABC的面积SABC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为我国数学家赵爽3世纪初在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂色不相同的概率为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,,又数列满足:.

(1)求证:数列是等比数列;

(2)若数列是单调递增数列,求实数的取值范围;

(3)若数列的各项皆为正数,,设是数列的前项和,问:是否存在整数,使得数列是单调递减数列?若存在,求出整数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案