如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE,且CE=AC=2BD,M是AE的中点.
(1)求证:DE=DA;
(2)求证:平面BDM⊥平面ECA;
(3)求证:平面DEA⊥平面ECA.
(1)取EC的中点F,连结DF.
∵CE⊥平面ABC,
∴CE⊥BC.易知DF∥BC,∴CE⊥DF.
∵BD∥CE,∴BD∥平面ABC.
在Rt△EFD和Rt△DBA中,
EF=CE=DB,DF=BC=AB,
∴Rt△EFD≌Rt△DBA.故DE=DA.
(2)取AC的中点N,连结MN、BN,则MN綊CF.
∵BD綊CF,∴MN綊BD,∴N∈平面BDM.
∵EC⊥平面ABC,∴EC⊥BN.
又∵AC⊥BN,EC∩AC=C,∴BN⊥平面ECA.
又∵BN⊂平面BDM,∴平面BDM⊥平面ECA.
(3)∵DM∥BN,BN⊥平面ECA,
∴DM⊥平面ECA.
又∵DM⊂平面DEA,∴平面DEA⊥平面ECA.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年聊城市三模)(12分) 如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中点.
(I)证明:DM∥平面ABC;
(II)证明:CM⊥DE;
(III)求平面ADE与平面ABC所成的二面角的大小(只考虑锐角情况).
查看答案和解析>>
科目:高中数学 来源: 题型:
如图所示,△ABC为直角三角形,∠C=90°,若 =(0,-4),M在轴上,且AM=,点C在轴上移动.
(Ⅰ)求点B的轨迹E的方程;
(Ⅱ)过点F(0,)的直线与曲线E交于P、Q两点,设N(0,)(<0),与的夹角为,若≤等恒成立,求的取值范围;
(Ⅲ)设以点N为圆心,以半径的圆与曲线E在第一象限的交点为H,若圆在点H处的切线与曲线E在点H处的切线互相垂直,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
求证:(1)DE=DA;
(2)平面MBD⊥平面ECA;
(3)平面DEA⊥平面ECA.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com