精英家教网 > 高中数学 > 题目详情
己知函数f(x)=
3
sinxcosx+co
s
x-
1
2
,△ABC
三个内角A,B,C的对边分别为a,b,c,且f(B)=1.
(I)求角B的大小;
(II)若a=
3
,b=1
,求c的值.
(I)∵sinxcosx=
1
2
sin2x,cos2x=
1
2
(1+cos2x)
f(x)=
3
sinxcosx+co
s
x-
1
2
=
3
2
sin2x+
1
2
cos2x=sin(2x+
π
6

∵f(B)=1,即sin(2B+
π
6
)=1
∴2B+
π
6
=
π
2
+2kπ(k∈Z),可得B=
π
6
+kπ(k∈Z)
∵B∈(0,π),∴取k=0,得B=
π
6

(II)根据余弦定理b2=a2+c2-2accosB,得
12=(
3
2+c2-2
3
ccos
π
6

化简整理得c2-3c+2=0,解之得c=1或2.
即当a=
3
,b=1
时,边c的值等于c=1或2.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象点的两点,横坐标为
1
2
的点P是M,N的中点.
(1)求证:y1+y2的定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,n≥2)
an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*)
,Tn为数列{an}前n项和,当Tn<m(Sn+1+1)对一切n∈N*都成立时,试求实数m的取值范围.
(3)在(2)的条件下,设bn=
1
4(Sn+1+1)(Sn+2+1)+1
,Bn为数列{bn}前n项和,证明:Bn
17
52

查看答案和解析>>

科目:高中数学 来源: 题型:

己知函数f(x)=
x2
1+x2
,那么f(1)+f(2)+f(3)+…+f(2009)+f(
1
2
)+f(
1
3
)+…+f(
1
2009
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•婺城区模拟)己知函数f(x)=
3
sinxcosx+co
s
2
 
x-
1
2
,△ABC
三个内角A,B,C的对边分别为a,b,c,且f(B)=1.
(I)求角B的大小;
(II)若a=
3
,b=1
,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

己知函数f(x)=
1
2
(1+x)2-ln(1+x)

(1)求f(x)的单调区间;
(2)若x∈[
1
e
-1,e-1]
时,f(x)<m恒成立,求m的取值范围;
(3)若设函数g(x)=
1
2
x2+
1
2
x+a
,若g(x)的图象与f(x)的图象在区间[0,2]上有两个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•遂宁二模)己知函数f(x)=
2x-a(x≥3)
x2-9
x-3
(x<3)
,在x=3处连续,则常数a的值为(  )

查看答案和解析>>

同步练习册答案