精英家教网 > 高中数学 > 题目详情
10.已知⊙C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R)
(1)求证:对任意m∈R,直线l与⊙C恒有两个交点;
(2)求直线l被⊙C截得的线段的最短长度,及此时直线l的方程.

分析 (1)判断直线l是否过定点,可将(2m+1)x+(m+1)y-7m-4=0,m∈R转化为(x+y-4)+m(2x+y-7)=0,利用$\left\{\begin{array}{l}{x+y-4=0}\\{2x+y-7=0}\end{array}\right.$即可确定所过的定点A(3,1);再计算|AC|,与圆的半径R=$\sqrt{5}$比较,判断l与圆的位置关系;
(2)弦长最小时,l⊥AC,由kAC=-$\frac{1}{2}$直线l的斜率,从而由点斜式可求得l的方程.

解答 解:(1)证明:由(2m+1)x+(m+1)y-7m-4=0,m∈R得:
(x+y-4)+m(2x+y-7)=0,
∵m∈R,
∴$\left\{\begin{array}{l}{x+y-4=0}\\{2x+y-7=0}\end{array}\right.$得x=3,y=1,
故l恒过定点A(3,1);
又圆心C(1,2),
∴|AC|=$\sqrt{5}$<5(半径)
∴点A在圆C内,从而直线l恒与圆C相交.
(2)∵弦长的一半、该弦弦心距、圆的半径构成一个直角三角形,
∴当l⊥AC(此时该弦弦心距最大),直线l被圆C截得的弦长最小,
∵kAC=-$\frac{1}{2}$,
∴直线l的斜率kl=2,
∴由点斜式可得l的方程为2x-y-5=0.

点评 本题考查直线与圆的位置关系及恒过定点的直线,难点在于(2)中“弦长最小时,l⊥AC”的理解与应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an}各项不为0,a1=$\frac{1}{2}$,an+1=$\frac{{a}_{n}}{{a}_{n}+1}$,
(1)求{an}的通项an
(2)若bn=na${\;}_{{2}^{n}-1}$,求数列{bn}的前n项和Sn
(3)用数学归纳法证明:a1+a2+a3+…+a${\;}_{{2}^{n-1}}$>$\frac{n-2}{2}$(n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)试用比较法证明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(m,n,a,b∈R)
(2)已知x2+y2=2,且|x|≠|y|,求$\frac{1}{{9{x^2}}}+\frac{9}{y^2}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.假设你家订了一份牛奶,奶哥在早上6:00---7:00之间随机地把牛奶送到你家,而你在早上6:30---7:30之间随机地离家上学,则你在离开家前能收到牛奶的概率是$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}的前n项和为Sn,且S10=$\int_0^1{(\sqrt{1-{x^2}}}+2x-\frac{π}{4})dx$,则a5+a6=(  )
A.$\frac{12}{5}$B.12C.6D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.曲线y=4-x3在点(-1,5)处的切线方程是(  )
A.3x+y-2=0B.y=7x+2C.y=x-4D.y=7x+4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,在三棱柱BCD-B1C1D1中,E、F分别是B1C1和C1D1的中点.求证:四边形EFDB是梯形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.到两定点(-2,0),(2,0)的距离之差的绝对值为定值3的点的轨迹是(  )
A.椭圆B.线段C.直线D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知p:方程x2+2mx+(m+2)=0有两个不等的正根;q:方程$\frac{x^2}{m+3}-\frac{y^2}{2m-1}=1$表示焦点在y轴上的双曲线.
(1)若q为真命题,求实数m的取值范围;
(2)若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

同步练习册答案