精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx+ax在点(t,f(t))处的切线方程为y=3x+1
(1)求a的值;
(2)已知k≤2,当x>1时,f(x)>k(1﹣ )+2x﹣1恒成立,求实数k的取值范围;
(3)对于在(0,1)中的任意一个常数b,是否存在正数x0 , 使得e + x02<1?请说明理由.

【答案】
(1)解:函数f(x)=lnx+ax的导数为f′(x)= +a,

在点(t,f(t))处切线方程为y=3x+1,

可得f′(t)= +a,

∴函数的切线方程为y﹣(lnt+at)=( +a)(x﹣t),即y=( +a)x+lnt﹣1,

解得a=2;


(2)证明:由(1)可得f(x)=lnx+2x,

∵f(x)>k(1﹣ )+2x﹣1,

∴lnx>k(1﹣ )﹣1

即为xlnx+x﹣k(x﹣3)>0,

可令g(x)=xlnx+x﹣k(x﹣3),

g′(x)=2+lnx﹣k,

由x>1,可得lnx>0,2﹣k≥0,

即有g′(x)>0,g(x)在(1,+∞)递增,

可得g(x)>g(1)=1+2k≥0,

∴﹣ ≤k≤2

故k的取值范围为[﹣ ,2];


(3)解:对于在(0,1)中的任意一个常数b,

假设存在正数x0,使得:e + x02<1.

由efx0+1)﹣3x02+ x02=elnx0+1)﹣x0+ x02=(x0+1)ex0+ x02<1成立,

从而存在正数x0,使得上式成立,只需上式的最小值小于0即可.

令H(x)=(x+1)ex+ x2﹣1,H′(x)=ex﹣(x+1)ex+bx=x(b﹣ex),

令H′(x)>0,解得x>﹣lnb,令H′(x)<0,解得0<x<﹣lnb,

则x=﹣lnb为函数H(x)的极小值点,即为最小值点.

故H(x)的最小值为H(﹣lnb)=(﹣lnb+1)elnb+ ln2b﹣1= ln2b﹣blnb+b﹣1,

再令G(x)= ln2x﹣xlnx+x﹣1,(0<x<1),

G′(x)= (ln2x+2lnx)﹣(1+lnx)+1=ln2x>0,

则G(x)在(0,1)递增,可得G(x)<G(1)=0,则H(﹣lnb)<0.

故存在正数x0=﹣lnb,使得e + x02<1.


【解析】(1)求出f(x)的导数,可得切线的斜率和切点,解方程可得a的值;(2)求出f(x)=lnx+x,要证原不等式成立,即证xlnx+x﹣k(x﹣3)>0,可令g(x)=xlnx+x﹣k(x﹣3),求出导数,判断符号,可得单调性,即可得证;(3)对于在(0,1)中的任意一个常数b,假设存在正数x0 , 使得e + x02<1.运用转化思想可令H(x)=(x+1)ex+ x2﹣1,求出导数判断单调性,可得最小值,即可得到结论

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线M: =1(a>0,b>0)的上焦点为F,上顶点为A,B为虚轴的端点,离心率e= ,且SABF=1﹣ .抛物线N的顶点在坐标原点,焦点为F.
(1)求双曲线M和抛物线N的方程;
(2)设动直线l与抛物线N相切于点P,与抛物线的准线相交于点Q,则以PQ为直径的圆是否恒过y轴上的一个定点?如果经过,试求出该点的坐标,如果不经过,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y= x2的图象在点(x0 x02)处的切线为l,若l也为函数y=lnx(0<x<1)的图象的切线,则x0必须满足(
A. <x0<1
B.1<x0
C. <x0
D. <x0<2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列和等比数列满足

1的通项公式;

2求和:

【答案】1;(2

【解析】试题分析:(1)根据等差数列 列出关于首项公差的方程组,解方程组可得的值,从而可得数列的通项公式;(2)利用已知条件根据题意列出关于首项公比 的方程组,解得的值求出数列的通项公式,然后利用等比数列求和公式求解即可.

试题解析:(1)设等差数列{an}的公差为d. 因为a2+a4=10,所以2a1+4d=10.解得d=2.

所以an=2n1.

(2)设等比数列的公比为q. 因为b2b4=a5,所以b1qb1q3=9.

解得q2=3.所以.

从而.

型】解答
束】
18

【题目】已知命题:实数满足,其中;命题:方程表示双曲线.

(1)若,且为真,求实数的取值范围;

(2)若的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次至少击中3次的概率:先由计算器算出09之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了如下20组随机数:

5727 0293 7140 9857 0347

4373 8636 9647 1417 4698

0371 6233 2616 8045 6011

3661 9597 7424 6710 4281

据此估计,该射击运动员射击4次至少击中3次的概率为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市100户居民的月平均用电量(单位:),[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.

(1)求直方图中x的值;

(2)求月平均用电量的众数和中位数;

(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20172月底,90多所自主招生试点高校将陆续出台2017年自主招生简章,某校高三年级选取了在期中考试中成绩优异的100名学生作为调查对象,对是否准备参加2017年的自主招生考试进行了问卷调查,其中准备参加”“不准备参加待定的人数如表:

准备参加

不准备参加

待定

男生

30

6

15

女生

15

9

25

(1)在所有参加调查的同学中,在三种类型中用分层抽样的方法抽取20人进行座谈交流,则在准备参加”“不准备参加待定的同学中应各抽取多少人?

(2)准备参加的同学中用分层抽样方法抽取6,从这6人中任意抽取2,求至少有一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的4个图像中,与所给3个事件最吻合的顺序为

①我离开家后,心情愉快,缓慢行进,但最后发现快迟到时,加速前进;

②我骑着自行车上学,但中途车坏了,我修理好又以原来的速度前进;

③我快速的骑着自行车,最后发现时间充足,又减缓了速度.

A. ③①② B. ③④② C. ②①③ D. ②④③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中.

(1)求函数的定义域

(2)若函数的最大值是2,求的值

(3)求使成立的的取值范围.

查看答案和解析>>

同步练习册答案