【题目】在如图所示的几何体中,四边形是正方形,平面,、分别是线段、的中点,.
(1)证明:平面;
(2)设点是线段的中点,求二面角的余弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)取的中点,连接、,证明出四边形为平行四边形,可得出,然后利用直线与平面平行的判定定理可证明出平面;
(2)以点为坐标原点,分别以、、所在直线为轴、轴、轴建立空间直角坐标系,计算出平面和平面的法向量,然后利用空间向量法可求出二面角的余弦值.
(1)取的中点为,连接、,如图:
四边形为正方形,、、分别是线段、、的中点,
且,且,,
四边形为平行四边形,,
平面,平面,平面;
(2)平面,四边形是正方形,、、两两垂直,
以点为坐标原点,分别以、、所在直线为轴、轴、轴建立空间直角坐标系,则、、、,
,,,
设平面的法向量为,则,
取,则,,则平面的一个法向量为,
设平面的法向量为,则,
取,则,,则平面的一个法向量为.
,
由图形可知,二面角为锐角,其余弦值为.
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点恰好是椭圆的右焦点.
(1)求实数的值及抛物线的准线方程;
(2)过点任作两条互相垂直的直线分别交抛物线于、和、点,求两条弦的弦长之和的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果底面是菱形的直棱柱(侧棱与底面垂直的棱柱)的所有棱长都相等,,E,M,N分别为的中点,现有下列四个结论:①平面②③平面④异面真线与MN所成的角的余弦值为,其中正确结论的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了50人,他们年龄大点频率分布及支持“生育二胎”人数如下表:
年龄 | ||||||
频率 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上统计数据填下面2乘2列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:
(2)若对年龄在的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?
参考数据: , , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济的飞速发展,人民生活水平得到很大提高,汽车已经进入千千万万的家庭.大部分的车主在购买汽车时,会在轿车或者中作出选择,为了研究某地区哪种车型更受欢迎以及汽车一年内的行驶里程,某汽车销售经理作出如下统计:
购买了轿车(辆) | 购买了(辆) | |
岁以下车主 | ||
岁以下车主 |
(1)根据表,是否有的把握认为年龄与购买的汽车车型有关?
(2)图给出的是名车主上一年汽车的行驶里程,求这名车主上一年汽车的平均行驶里程(同一组中的数据用该组区间的中点值作代表);
(3)用分层抽样的方法从岁以上车主中抽取人,再从这人中随机抽取人赠送免费保养券,求这人中至少有辆轿车的概率。
附:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的参数方程为:,为参数点的极坐标为,曲线C的极坐标方程为.
Ⅰ试将曲线C的极坐标方程化为直角坐标方程,并求曲线C的焦点在直角坐标系下的坐标;
Ⅱ设直线l与曲线C相交于两点A,B,点M为AB的中点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了茎叶图:则下列结论中表述不正确的是
A. 第一种生产方式的工人中,有75%的工人完成生产任务所需要的时间至少80分钟
B. 第二种生产方式比第一种生产方式的效率更高
C. 这40名工人完成任务所需时间的中位数为80
D. 无论哪种生产方式的工人完成生产任务平均所需要的时间都是80分钟.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设P是椭圆上一点,M,N分别是两圆(x+4)2+y2=1和(x-4)2+y2=1上的点,则|PM|+|PN|的最小值、最大值分别为 ( )
A. 9,12 B. 8,11 C. 10,12 D. 8,12
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com