精英家教网 > 高中数学 > 题目详情

【题目】如图是一座桥的截面图,桥的路面由三段曲线构成,曲线AB和曲线DE分别是顶点在路面A、E的抛物线的一部分,曲线BCD是圆弧,已知它们在接点B、D处的切线相同,若桥的最高点C到水平面的距离H=6米,圆弧的弓高h=1米,圆弧所对的弦长BD=10米.
(1)求弧 所在圆的半径;
(2)求桥底AE的长.

【答案】
(1)解:设弧 所在圆的半径为r(r>0),由题意得r2=52+(r﹣1)2,则r=13,

即弧 所在圆的半径为13米


(2)解:以线段AE所在直线为x轴,线段AE的中垂线为y轴,建立如图的平面直角坐标系.∵H=6米,BD=10米,弓高h=1米,

∴B(﹣5,5),D(5,5),C(0,6),设 所在圆的方程为x2+(y﹣b)2=r2,(r>0),

∴弧 的方程为x2+(y+7)2=169(5≤y≤6)

设曲线AB所在抛物线的方程为:y=a(x﹣m)2

由点B(﹣5,5),在曲线AB上

∴5=a(5+m)2

又弧 与曲线段AB在接点B处的切线相同,且弧 在点B处的切线的斜率为

由y=a(x﹣m)2,y′=2a(x﹣m),2a(﹣5﹣m)=

2a(5+m)=﹣

由得m=﹣29,A(﹣29,0),E(29,0)

∴桥底AE的长为58米


【解析】(1)由r2=52+(r﹣1)2 , 即可求得r,即可求得弧 所在圆的半径;(2)建立直角坐标系,由题意设 所在圆的方程,列方程组,即可求得圆的方程,曲线AB所在抛物线的方程为:y=a(x﹣m)2 , 求导,根据导数的几何意义,即可求得m的值,求得A和E点坐标,即可求得桥底AE的长为58米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l4x3y100,半径为2的圆Cl相切,圆心Cx轴上且在直线l的右上方.

(1)求圆C的方程;

(2)过点M(10)的直线与圆C交于AB两点(Ax轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 平面 的中点.

(1)求证: 平面
(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据,

1)求

2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

3)已知该厂技动前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

已知 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,若a2+c2+ ac=b2 , sinA=
(1)求sinC的值;
(2)若a=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德国数学家科拉茨1937年提出一个著名的猜想:任给一个正整数 ,如果 是偶数,就将它减半(即 );如果 是奇数,则将它乘3加1(即 ),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明。也不能否定,现在请你研究:如果对正整数 (首项)按照上述规则旅行变换后的第9项为1(注:1可以多次出现),则 的所有不同值的个数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项不为零的数列{an}的前n项和为Sn , 且a1=1,Sn=panan+1(n∈N*),p∈R.
(1)若a1 , a2 , a3成等比数列,求实数p的值;
(2)若a1 , a2 , a3成等差数列,
①求数列{an}的通项公式;
②在an与an+1间插入n个正数,共同组成公比为qn的等比数列,若不等式(qnn+1)(n+a≤e对任意的n∈N*恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为建设美丽乡村,政府欲将一块长12百米,宽5百米的矩形空地ABCD建成生态休闲园,园区内有一景观湖EFG(图中阴影部分),以AB所在直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系xOy(如图所示).景观湖的边界线符合函数y=x+ (x>0)模型,园区服务中心P在x轴正半轴上,PO= 百米.
(1)若在点O和景观湖边界曲线上一点M之间修建一条休闲长廊OM,求OM的最短长度;
(2)若在线段DE上设置一园区出口Q,试确定Q的位置,使通道PQ最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合M={x||x|<1},N={y|y=2x , x∈M},则集合R(M∩N)等于(
A.(﹣∞, ]
B.( ,1)
C.(﹣∞, ]∪[1,+∞)
D.[1,+∞)

查看答案和解析>>

同步练习册答案